

162 The resistance of a metal cube is measured by placing it between two parallel plates, as shown.

9702/11/ /J/11/Q34

The cube has volume V and is made of a material with resistivity ρ . The connections to the cube have negligible resistance.

Which expression gives the electrical resistance of the metal cube between X and Y?

A $\rho V^{\frac{1}{3}}$

$\rho V^{\frac{2}{3}}$

$\frac{\rho}{V^{\frac{1}{3}}}$

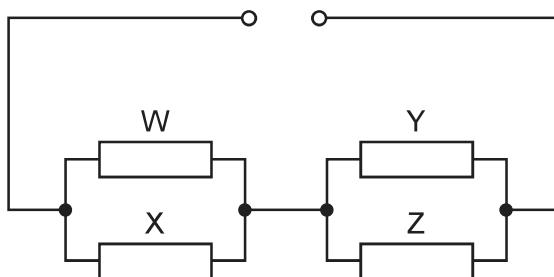
$\frac{\rho}{V^{\frac{2}{3}}}$

163 A battery is marked 9.0 V.

9702/13/ /J/11/Q31

What does this mean?

A Each coulomb of charge from the battery supplies 9.0 J of electrical energy to the whole circuit.


The battery supplies 9.0 J to an external circuit for each coulomb of charge.

The potential difference across any component connected to the battery will be 9.0 V.

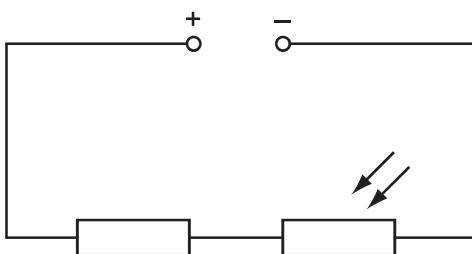
There will always be 9.0 V across the battery terminals.

164 Four resistors of equal value are connected as shown.

9702/13/ /J/11/Q33

How will the powers to the resistors change when resistor W is removed?

A The powers to X, Y and Z will all increase.


The power to X will decrease and the powers to Y and Z will increase.

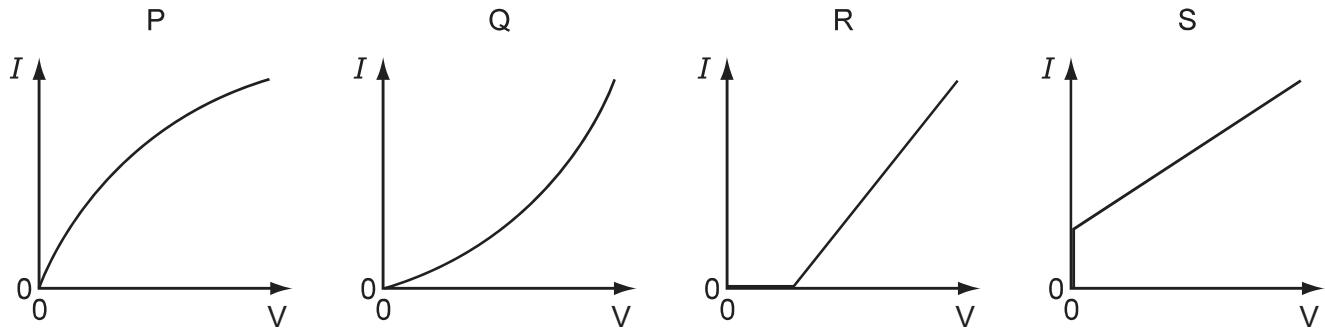
The power to X will increase and the powers to Y and Z will decrease.

The power to X will increase and the powers to Y and Z will remain unaltered.

165 The diagram shows a fixed resistor and a light-dependent resistor (R) in series with a constant low-voltage supply.

9702/12/ I/J/11/Q37

When the R is in the dark, the fixed resistor and the R have the same value of resistance.

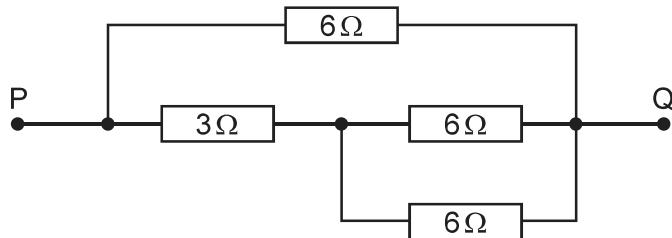

Light is shone on the R.

What happens to the potential differences across the two components?

A	p.d. across resistor	p.d. across R
	decreased	increased
	increased	decreased
	no change	increased
	no change	decreased

166 The graphs show possible current-voltage (I-V) relationships for a filament lamp and for a semiconductor diode.

9702/13/ I/J/11/Q34



Which row best specifies the correct I-V graphs for the lamp and the diode?

A	filament lamp	semiconductor diode
	P	R
	P	S
	Q	R
	Q	S

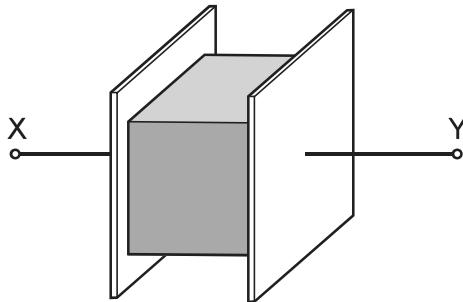
167 The diagram shows a d.c. circuit.

9702/12/ /J/11/Q38

What is the resistance between the points P and Q due to the resistance network?

A 0.47Ω 2.1Ω 3.0Ω 21Ω

168 A copper wire of cross-sectional area 2.0 mm^2 carries a current of 10 A.


9702/13/ /J/11/Q32

How many electrons pass through a given cross-section of the wire in one second?

A 1.0×10^1 5.0×10^6 6.3×10^{19} 3.1×10^{25}

169 The resistance of a metal cube is measured by placing it between two parallel plates, as shown.

9702/13/ /J/11/Q35

The cube has volume V and is made of a material with resistivity ρ . The connections to the cube have negligible resistance.

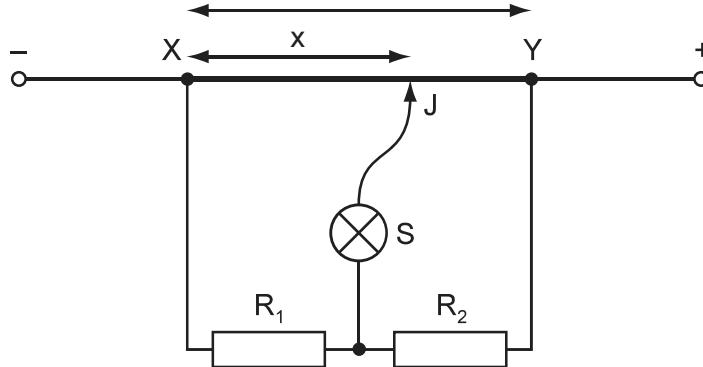
Which expression gives the electrical resistance of the metal cube between X and Y?

A $\rho V^{\frac{1}{3}}$ $\rho V^{\frac{2}{3}}$ $\frac{\rho}{V^{\frac{1}{3}}}$ $\frac{\rho}{V^{\frac{2}{3}}}$

170 Which statement is not valid?

9702/11/ /N/11/Q35

A Current is the speed of the charged particles that carry it.


Electromotive force (e.m.f.) is the energy converted to electrical energy from other forms, per unit charge.

The potential difference (p.d.) between two points is the work done in moving unit charge from one point to the other.

The resistance between two points is the p.d. between the two points, per unit current.

171 In the circuit shown, XY is a length x of uniform resistance wire. R_1 and R_2 are unknown resistors. J is a sliding contact that joins the junction of R_1 and R_2 to points on XY through a small signal lamp S.

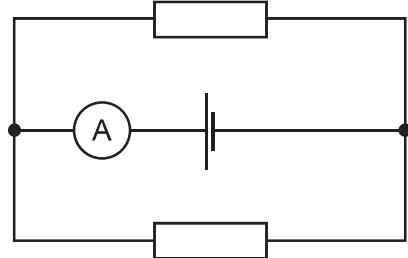
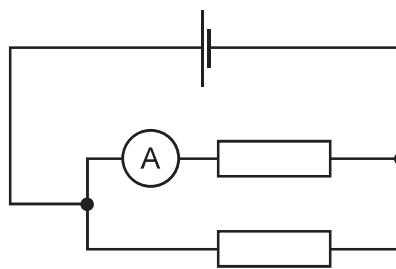
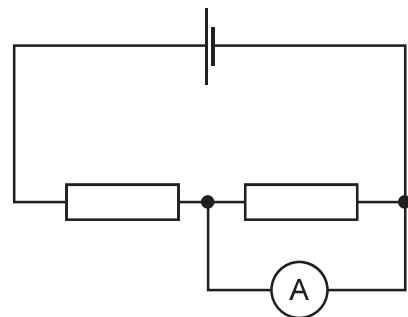
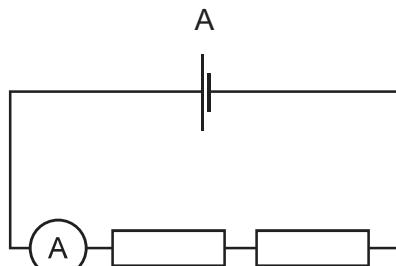
9702/13/ /J/11/Q36

To determine the ratio $\frac{V_1}{V_2}$ of the potential differences across R_1 and R_2 , a point is found on XY at which the lamp is off. This point is at a distance x from X.

What is the value of the ratio $\frac{V_1}{V_2}$?

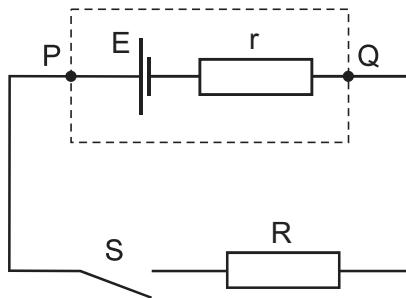
$$A \quad \frac{x}{x}$$

$$\frac{x}{x}$$





$$\frac{x}{x}$$

$$\frac{x}{x}$$

172 A cell, two resistors of equal resistance and an ammeter are used to construct four circuits. The resistors are the only parts of the circuits that have resistance.


9702/11/ /N/11/Q37

In which circuit will the ammeter show the greatest reading?

173 A cell of e.m.f. E and internal resistance r is connected in series with a switch S and an external resistor of resistance R .

9702/11/ /N/11/Q36

The p.d. between P and Q is V .

When S is closed,

A V decreases because there is a p.d. across R .

V decreases because there is a p.d. across r .

V remains the same because the decrease of p.d. across r is balanced by the increase of p.d. across R .

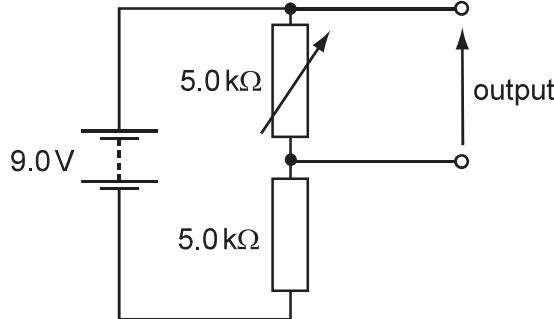
V remains the same because the sum of the p.d.s across r and R is still equal to E .

174 Which of the equations that link some of the following terms is correct?

9702/11/ /N/11/Q34

potential difference (p.d.)	V
current	I
resistance	R
charge	Q
energy	E
power	P
time	t

A $P = \frac{Q^2 R}{t}$

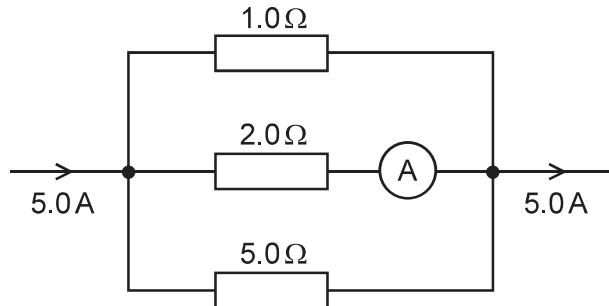

$ER^2 = V^2 t$

$\frac{VI}{P} = t$

$PQ = EI$

175 The diagram shows a potential divider circuit designed to provide a variable output p.d.

9702/11/ /N/11/Q39



Which row gives the available range of output p.d.?

	maximum output	minimum output
A	3.0V	0
	4.5V	0
	9.0V	0
	9.0V	4.5V

176 The diagram shows part of a current-carrying circuit. The ammeter has negligible internal resistance.

9702/13/ /J/11/Q37

What is the reading on the ammeter?

A 0.7A 1.3A 1.5A 1.7A

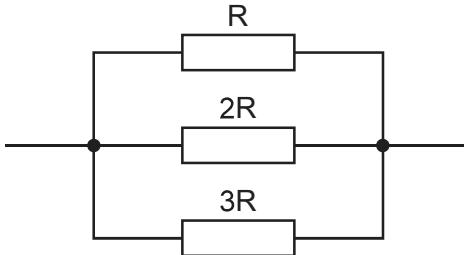
177 There is a current of 10 mA in a conductor for half an hour.

9702/11/ /J/12/Q33

How much charge passes a point in the conductor in this time?

A 0.3 5 1 300

178 A charge of .0 passes through a resistor of resistance 30Ω at a constant rate in a time of 20 s.


9702/12/ /N/11/Q32

What is the potential difference across the resistor?

A 0.40V 5.3V 12V 75V

179 Three resistors of resistance R , $2R$ and $3R$ are connected in parallel.

9702/11/ /N/11/Q38

Using I to represent the current through the resistor of resistance R , which row represents the relationships between the currents through the resistors?

	resistor resistance		
	R	$2R$	$3R$
A	I	$\frac{1}{3}I$	$\frac{1}{2}I$
	I	$\frac{1}{2}I$	$\frac{1}{3}I$
	I	$\frac{2}{3}I$	$\frac{1}{3}I$
	I	$2I$	$3I$

180 An iron wire has length 0.0m and diameter 0.50 mm . The wire has resistance R .

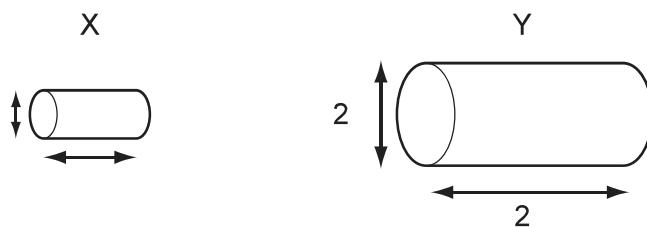
9702/11/ /J/12/Q34

A second iron wire has length 2.0 m and diameter 1.0 mm .

What is the resistance of the second wire?

A $\frac{R}{16}$

R


$\frac{R}{2}$

R

181 Two electrically-conducting cylinders X and Y are made from the same material.

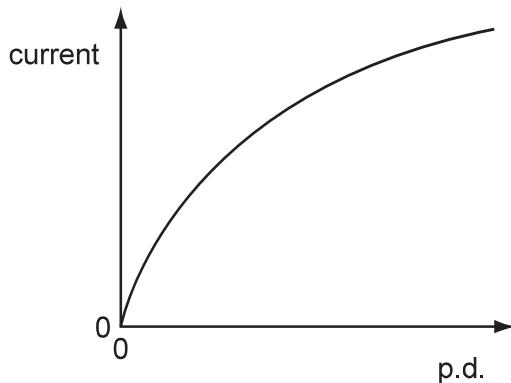
9702/12/ /N/11/Q34

Their dimensions are as shown.

The resistance of each cylinder is measured between its ends.

What is the ratio $\frac{\text{resistance of X}}{\text{resistance of Y}}$?

A $\frac{2}{1}$

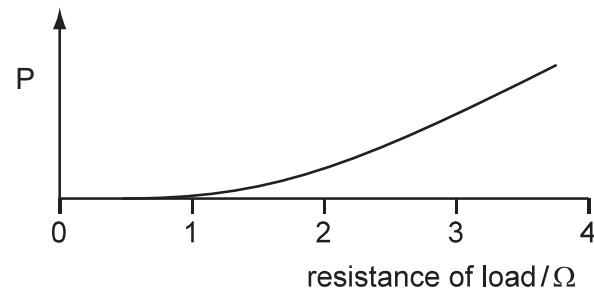
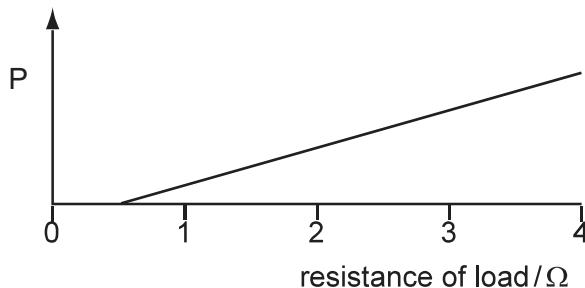

$\frac{1}{1}$

$\frac{1}{2}$

$\frac{1}{4}$

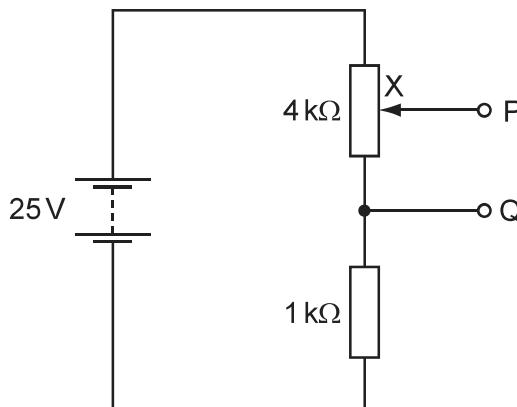
182 The graph shows the variation with potential difference (p.d.) of the current in a lamp filament.

9702/12/ /N/11/Q33

Which statement explains the shape of this graph?

A As the filament temperature rises, electrons can pass more easily through the filament.
 It takes time for the filament to reach its working temperature.
 The power output of the filament is proportional to the square of the current in it.
 The resistance of the filament increases with a rise in temperature.


183 A power supply of electromotive force (e.m.f.) 12V and internal resistance 2Ω is connected in series with a load resistor. The value of the load resistor is varied from 0.5Ω to 4Ω .

Which graph shows how the power P dissipated in the load resistor varies with the resistance of the load resistor?

9702/12/O/N/11/Q35

184 The diagram shows a potential divider circuit which, by adjustment of the contact X, can be used to provide a variable potential difference between the terminals P and Q. 9702/12/ /N/11/Q37

What are the limits of this potential difference?

A 0 and 5 V 0 and 20 V 0 and 25 V 5 V and 25 V

185 Each of Irchhoff's laws is linked to the conservation of a physical quantity. 9702/12/ /N/11/Q36

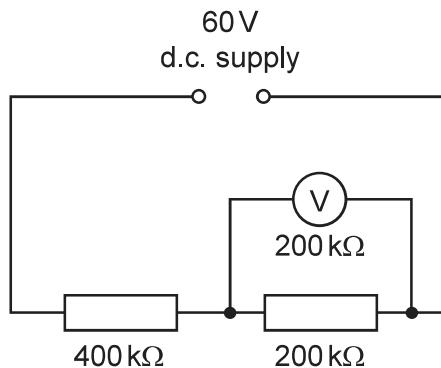
Which physical quantities are assumed to be conserved in the formulation of Irchhoff's first law and of Irchhoff's second law?

	Irchhoff's first law	Irchhoff's second law
A	energy	charge
	energy	momentum
	charge	energy
	momentum	energy

186 Which statement about electrical resistivity is correct?

9702/11/ /N/11/Q33

A The resistivity of a material is numerically equal to the resistance in ohms of a cube of that material, the cube being of side length one metre and the resistance being measured between opposite faces.


The resistivity of a material is numerically equal to the resistance in ohms of a one metre length of wire of that material, the area of cross-section of the wire being one square millimetre and the resistance being measured between the ends of the wire.

The resistivity of a material is proportional to the cross-sectional area of the sample of the material used in the measurement.

The resistivity of a material is proportional to the length of the sample of the material used in the measurement.

187 A constant 60 V d.c. supply is connected across two resistors of resistance 400 k Ω and 200 k Ω .

9702/12/ /N/11/Q38

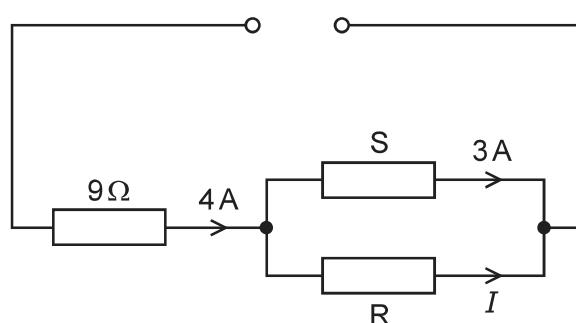
What is the reading on a voltmeter, also of resistance $200\text{ k}\Omega$, when connected across the $200\text{ k}\Omega$ resistor as shown in the diagram?

A 12V 15V 20V 30V

188 Which statement is not valid?

9702/13/ /N/11/Q34

Current is the speed of the charged particles that carry it.

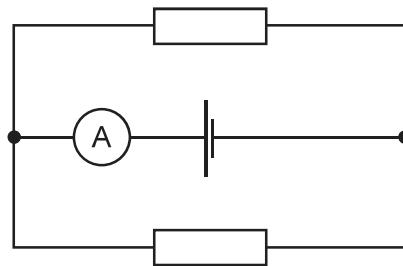
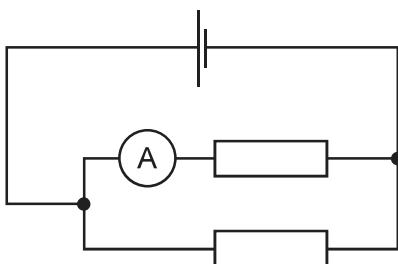
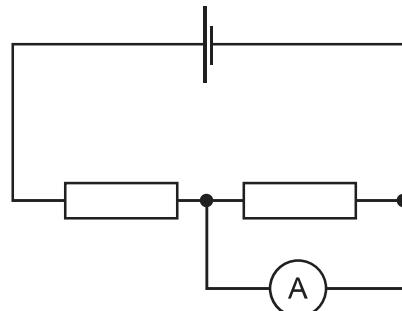
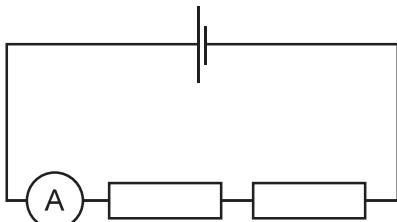

Electromotive force (e.m.f.) is the energy converted to electrical energy from other forms, per unit charge.

The potential difference (p.d.) between two points is the work done in moving unit charge from one point to the other.

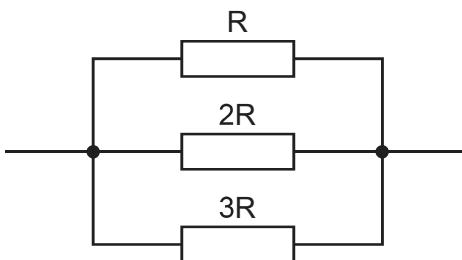
The resistance between two points is the p.d. between the two points, per unit current.

189 The circuit below has a current I in the resistor R .

9702/11/ 11/12/Q38





What must be known in order to determine the value of I ?

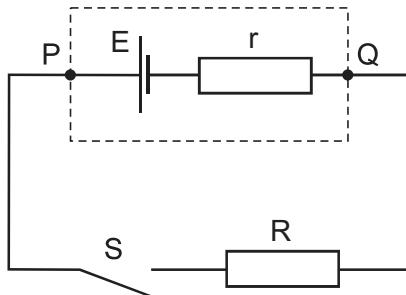
- A e.m.f. of the power supply
- resistance of resistor S
- irchhoff's first law
- irchhoff's second law


190 A cell, two resistors of equal resistance and an ammeter are used to construct four circuits. The resistors are the only parts of the circuits that have resistance. 9702/13/ /N/11/Q36

In which circuit will the ammeter show the greatest reading?

A

191 Three resistors of resistance R , $2R$ and $3R$ are connected in parallel. 9702/13/ /N/11/Q37



Using I to represent the current through the resistor of resistance R , which row represents the relationships between the currents through the resistors?

	resistor resistance		
	R	$2R$	$3R$
A	I	$\frac{1}{3}I$	$\frac{1}{2}I$
	I	$\frac{1}{2}I$	$\frac{1}{3}I$
	I	$\frac{2}{3}I$	$\frac{1}{3}I$
	I	$2I$	$3I$

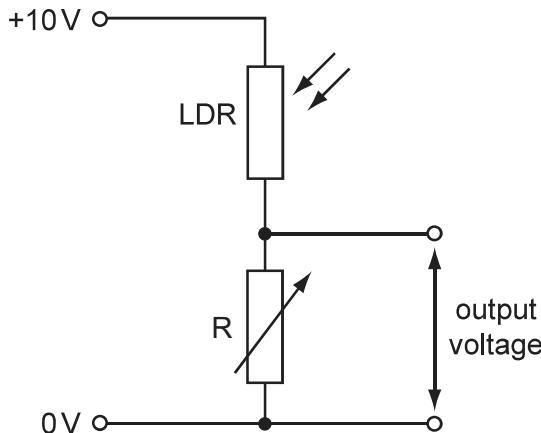
192 A cell of e.m.f. E and internal resistance r is connected in series with a switch S and an external resistor of resistance R .

9702/13/ /N/11/Q38

The p.d. between P and Q is V .

When S is closed,

A V decreases because there is a p.d. across R .

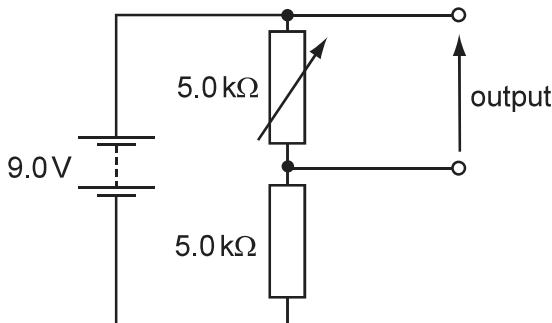

V decreases because there is a p.d. across r .

V remains the same because the decrease of p.d. across r is balanced by the increase of p.d. across R .

V remains the same because the sum of the p.d.s across r and R is still equal to E .

193 A potential divider consists of a light-dependent resistor (LDR) in series with a variable resistor of resistance R . The resistance of the LDR decreases when the light level increases. The variable resistor can be set at either high resistance or low resistance.

9702/11/ /J/12/Q37



Which situation gives the largest output voltage?

A	light level at LDR	R
	high	high
	high	low
	low	high
	low	low

194 The diagram shows a potential divider circuit designed to provide a variable output p.d.

9702/13/ /N/11/Q40

Which row gives the available range of output p.d.?

	maximum output	minimum output
A	3.0V	0
	4.5V	0
	9.0V	0
	9.0V	4.5V

195 Two copper wires of the same length but different diameters carry the same current. 9702/12/ /J/12/Q33

Which statement about the flow of charged particles through the wires is correct?

A charged particles are provided by the power supply. Therefore the speed at which they travel depends only on the voltage of the supply.

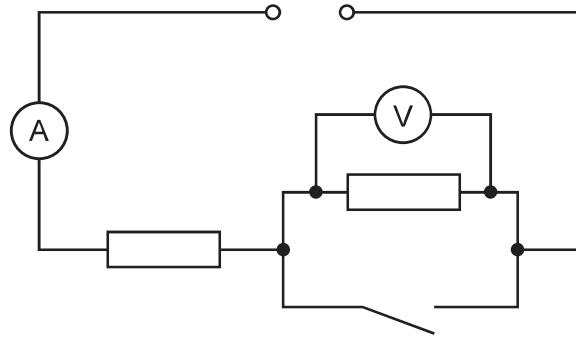
The charged particles in both wires move with the same average speed because the current in both wires is the same.

The charged particles move faster through the wire with the larger diameter because there is a greater volume through which to flow.

The charged particles move faster through the wire with the smaller diameter because it has a larger potential difference applied to it.

196 A power cable X has resistance R and carries current I.

9702/12/ /J/12/Q34

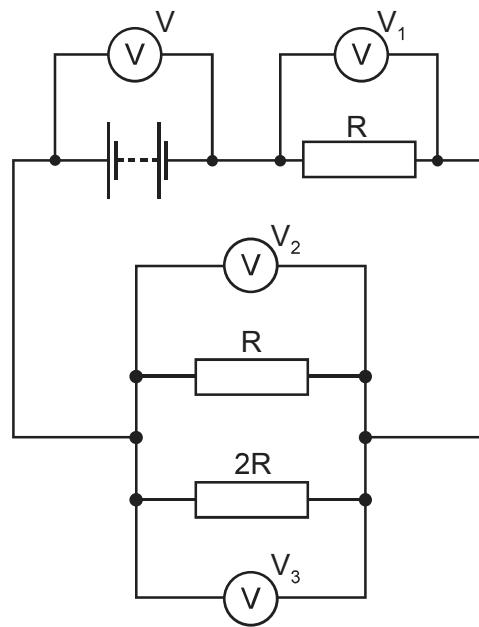

A second cable Y has resistance $2R$ and carries current $\frac{1}{2}I$.

What is the ratio $\frac{\text{power dissipated in Y}}{\text{power dissipated in X}}$?

A $\frac{1}{4}$ $\frac{1}{2}$ 2 4

197 In the circuit below, the ammeter reading is I and the voltmeter reading is V .

9702/11/ /J/12/Q36



When the switch is closed, which row describes what happens to I and V ?

	I	V
A	decreases	decreases to zero
	increases	decreases to zero
	increases	stays the same
	stays the same	increases

198 The diagram shows a circuit with four voltmeter readings V , V_1 , V_2 and V_3 .

9702/12/ /J/12/Q35

Which equation relating the voltmeter readings must be true?

A $V = V_1 + V_2 + V_3$

$V + V_1 = V_2 + V_3$

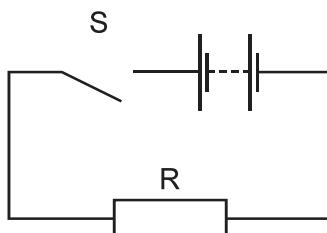
$V_3 = 2(V_2)$

$V - V_1 = V_3$

199 Which statement about electrical resistivity is correct?

9702/13/ /N/11/Q35

A The resistivity of a material is numerically equal to the resistance in ohms of a cube of that material, the cube being of side length one metre and the resistance being measured between opposite faces.


The resistivity of a material is numerically equal to the resistance in ohms of a one metre length of wire of that material, the area of cross-section of the wire being one square millimetre and the resistance being measured between the ends of the wire.

The resistivity of a material is proportional to the cross-sectional area of the sample of the material used in the measurement.

The resistivity of a material is proportional to the length of the sample of the material used in the measurement.

200 The diagram shows a simple circuit.

9702/11/ /J/12/Q35

Which statement is correct?

A When switch S is closed, the electromotive force (e.m.f.) of the battery falls because work is done against the internal resistance of the battery.

When switch S is closed, the e.m.f. of the battery falls because work is done against the resistance R.

When switch S is closed, the potential difference across the battery falls because work is done against the internal resistance of the battery.

When switch S is closed, the potential difference across the battery falls because work is done against the resistance R.

201 An iron wire has length .0m and diameter 0.50 mm. The wire has resistance R.

9702/13/ /J/12/Q32

A second iron wire has length 2.0 m and diameter 1.0 mm.

What is the resistance of the second wire?

A $\frac{R}{16}$

$\frac{R}{2}$

$\frac{R}{2}$

R

202 There is a current of 10 mA in a conductor for half an hour.

9702/13/ /J/12/Q34

How much charge passes a point in the conductor in this time?

A 0.3

5

1

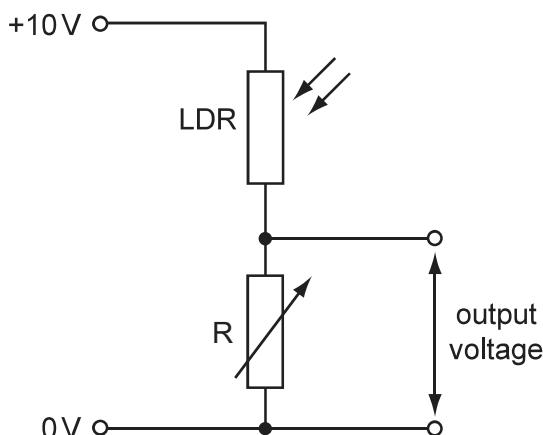
300

203 Which of the equations that link some of the following terms is correct?

9702/13/ /N/11/Q39

potential difference (p.d.)	V
current	I
resistance	R
charge	Q
energy	E
power	P
time	t

A $P = \frac{Q^2 R}{t}$

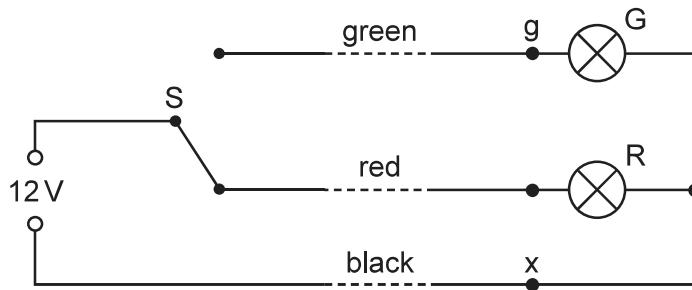

$$ER^2 = V^2 t$$

$$\frac{VI}{P} = t$$

$$PQ = EI$$

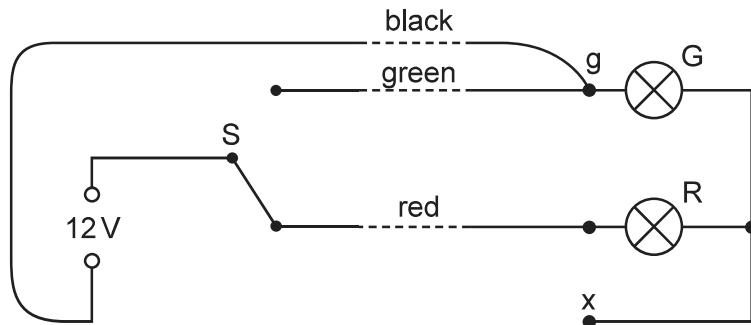
204 A potential divider consists of a light-dependent resistor (LDR) in series with a variable resistor of resistance R. The resistance of the LDR decreases when the light level increases. The variable resistor can be set at either high resistance or low resistance.

9702/13/ /J/12/Q38



Which situation gives the largest output voltage?

A	light level at R	R
	high	high
	high	low
	low	high
	low	low


205 The diagram shows the circuit for a signal to display a green or a red light. It is controlled by the switch S.

9702/12/ /J/12/Q37

The signal is some way from S to which it is connected by a cable with green, red and black wires. At the signal, the green and red wires are connected to the corresponding lamp and the black wire is connected to a terminal x to provide a common return. The arrangement is shown correctly connected and with the switch set to illuminate the red lamp.

During maintenance, the wires at the signal are disconnected and, when reconnected, the black wire is connected in error to the green lamp (terminal g) instead of terminal x. The red wire is connected correctly to its lamp and connections at S remain as in the diagram.

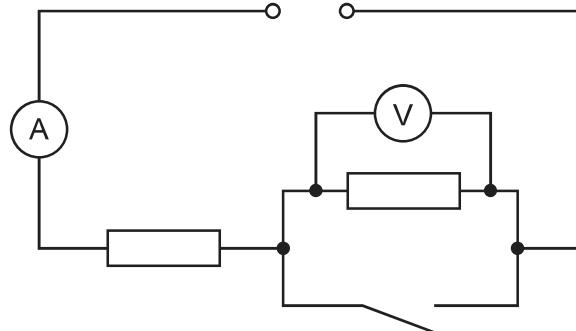


When the system is tested with the switch connection to the red wire, what does the signal show?

A the green lamp illuminated normally
 the red lamp illuminated normally
 the red and green lamps both illuminated normally
 the red and green lamps both illuminated dimly

206 In a fire alarm system, a thermistor T has a resistance of 2000Ω at room temperature. Its resistance decreases as the temperature increases. The alarm is triggered when the potential difference between X and Y reaches 4.5V.

9702/11/ /N/12/Q35

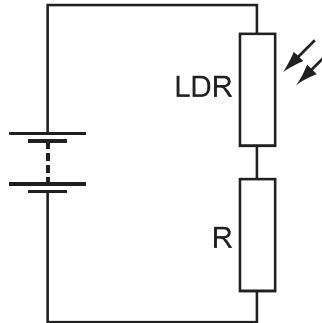


What is the resistance of the thermistor when the alarm is triggered?

A 90Ω 150Ω 250Ω 1300Ω

207 In the circuit below, the ammeter reading is I and the voltmeter reading is V .

9702/13/ /J/12/Q35



When the switch is closed, which row describes what happens to I and V ?

A	I	V
	decreases	decreases to zero
	increases	decreases to zero
	increases	stays the same
	stays the same	increases

208 A light-dependent resistor (LDR) is connected in series with a resistor R and a battery.

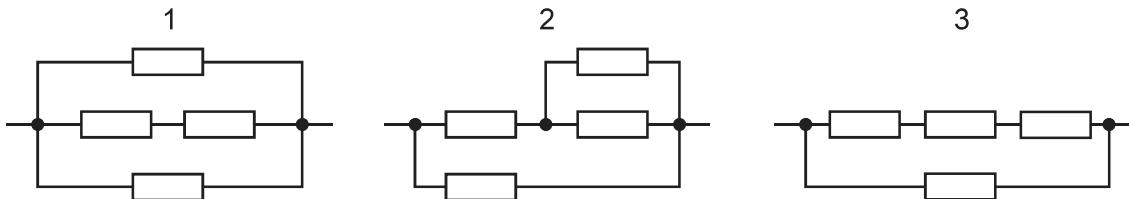
9702/12/ /J/12/Q36

The resistance of the LDR is equal to the resistance of R when no light falls on the LDR.

When the light intensity falling on the LDR increases, which statement is correct?

A The current in R decreases.
 The current in the LDR decreases.
 The p.d. across R decreases.
 The p.d. across the LDR decreases.

209 The potential difference between point X and point Y in a circuit is 20V. The time taken for charge carriers to move from X to Y is 15 s. In this time, the energy of the charge carriers changes by 12 J.

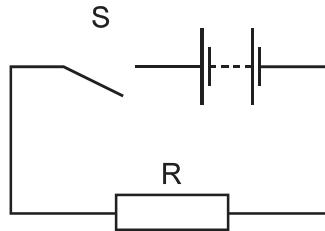

9702/11/ /N/12/Q32

What is the current between X and Y?

A 0.040 A 0.11 A 9.0 A 25 A

210 Four identical resistors are connected in the three networks below.

9702/12/ /J/12/Q38



Which arrangement has the highest total resistance and which has the lowest?

	highest	lowest
A	1	2
	1	3
	3	1
	3	2

211 The diagram shows a simple circuit.

9702/13/ /J/12/Q36

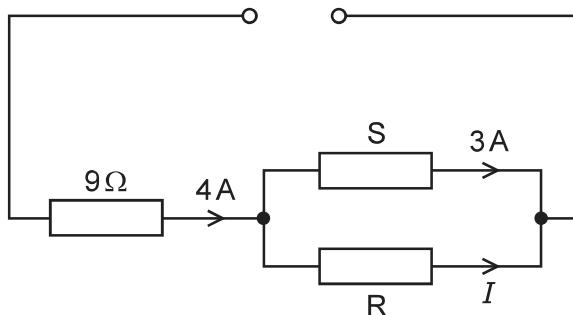
Which statement is correct?

A When switch S is closed, the electromotive force (e.m.f.) of the battery falls because work is done against the internal resistance of the battery.

When switch S is closed, the e.m.f. of the battery falls because work is done against the resistance R.

When switch S is closed, the potential difference across the battery falls because work is done against the internal resistance of the battery.

When switch S is closed, the potential difference across the battery falls because work is done against the resistance R.

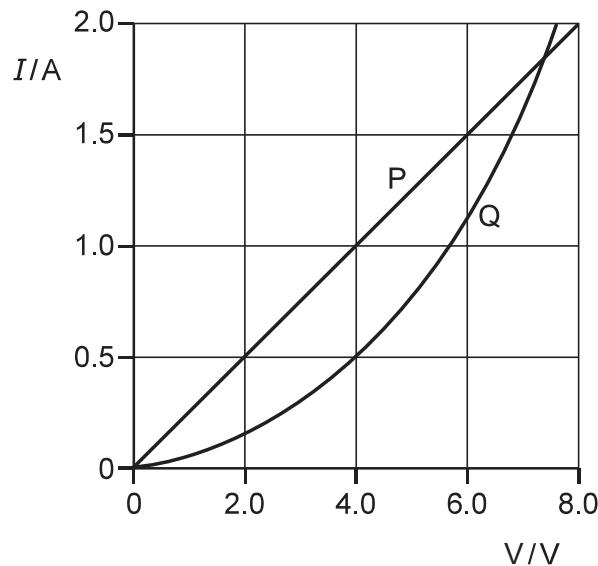

212 A cylindrical wire of length 10 m and diameter 2.0 mm has a resistance of 0.050Ω . 9702/11/ /N/12/Q33

From which material is the wire made?

	material	resistivity/ Ωm
A	bronze	1.6×10^{-7}
	nichrome	1.6×10^{-6}
	silver	1.6×10^{-8}
	zinc	6.3×10^{-8}

213 The circuit below has a current I in the resistor R .

9702/13/ /J/12/Q37

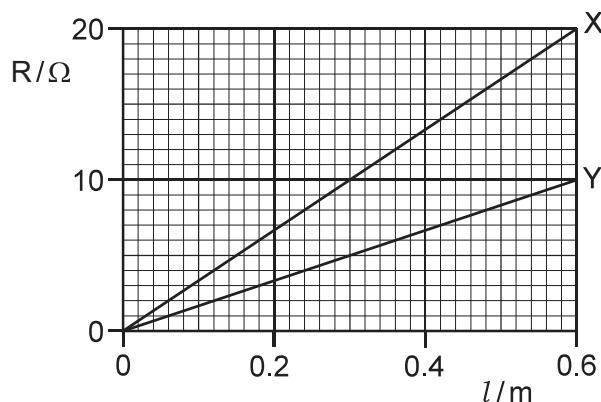


What must be known in order to determine the value of I ?

A e.m.f. of the power supply
 resistance of resistor S
 Kirchhoff's first law
 Kirchhoff's second law

214 The I-V characteristics of two electrical components P and Q are shown below.

9702/11/ /N/12/Q34



Which statement is correct?

A P is a resistor and Q is a filament lamp.
 The resistance of Q increases as the current in it increases.
 For a current of 1.9 A, the resistance of Q is approximately half that of P.
 For a current of 0.5 A, the power dissipated in Q is double that in P.

215 The graph shows the variation with length l of resistance R for two wires X and Y made from the same material.

9702/12/ /N/12/Q34

What does the graph show?

A cross-sectional area of X = 2 cross-sectional area of Y

resistivity of X = 2 resistivity of Y

when equal lengths of X and Y are connected in series to a battery,
power in X = 2 power in Y

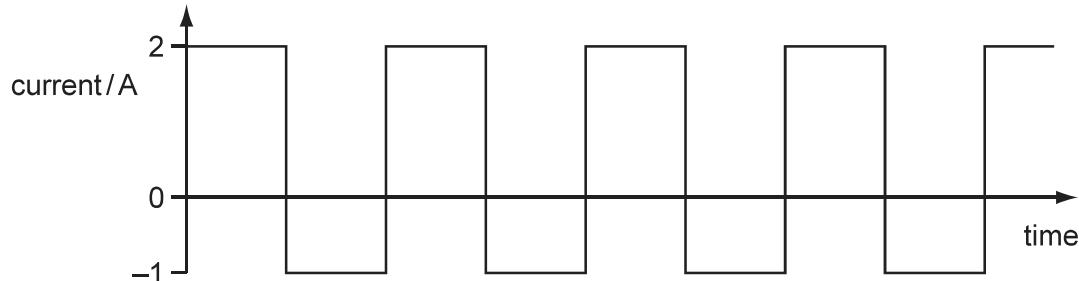
when equal lengths of X and Y are connected in parallel to a battery,
current in X = 2 current in Y

216 A cell of internal resistance 2.0Ω and electromotive force (e.m.f.) $1.5V$ is connected to a resistor of resistance 3.0Ω .

9702/12/ /N/12/Q35

What is the potential difference across the 3.0Ω resistor?

A $1.5V$


$1.2V$

$0.9V$

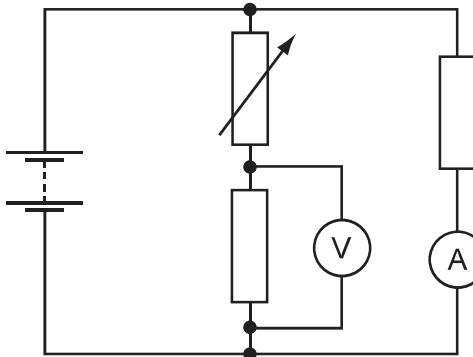
$0.6V$

217 A 100Ω resistor conducts a current with changing direction and magnitude, as shown.

9702/12/ /N/12/Q36

What is the mean power dissipated in the resistor?

A $100W$

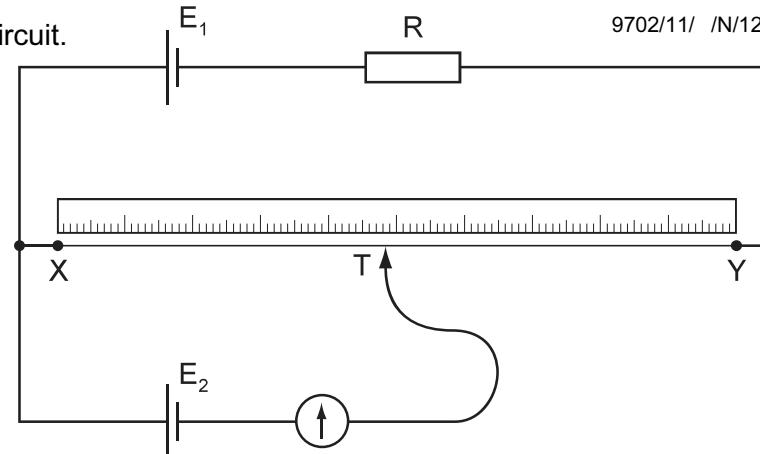

$150W$

$250W$

$400W$

218 A network of electrical components is connected across a battery of negligible internal resistance, as shown.

9702/11/ /N/12/Q36

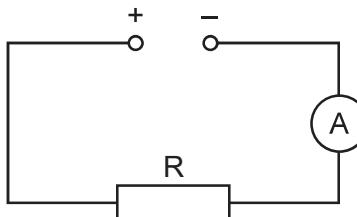

The resistance of the variable resistor is increased.

What is the effect on the readings of the ammeter and voltmeter?

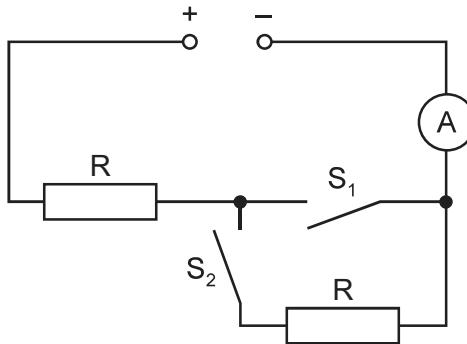
	ammeter	voltmeter
A	decreases	increases
	increases	decreases
	unchanged	decreases
	unchanged	increases

219 The diagram shows a potentiometer circuit.

9702/11/ /N/12/Q37


The contact T is placed on the wire and moved along the wire until the galvanometer reading is zero. The length XT is then noted.

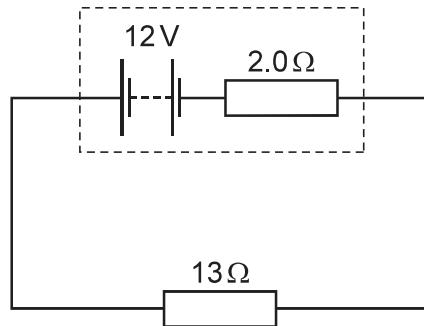
In order to calculate the potential difference per unit length of the wire XY, which value must also be known?


A the e.m.f. of the cell E_1
 the e.m.f. of the cell E_2
 the resistance of resistor R
 the resistance of the wire XY

220 The ammeter reading in the circuit below is I.

9702/12/ /N/12/Q37

Another circuit containing the same voltage supply, two switches, an ammeter and two resistors each of resistance R , is shown.

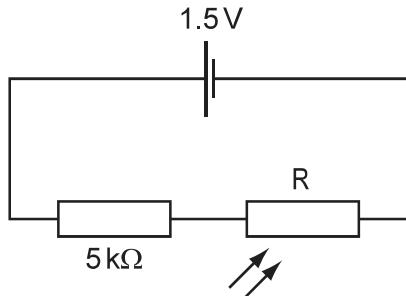


Which row is not correct?

	S_1	S_2	ammeter reading
A	closed	closed	I
	closed	open	I
	open	closed	I
	open	open	0

221 A power supply of electromotive force (e.m.f.) 12 V and internal resistance 2.0Ω is connected in series with a 13Ω resistor.

9702/11/ /J/13/Q32



What is the power dissipated in the 13Ω resistor?

A .3W 9.6W 10W 11W


222 A light-dependent resistor R has resistance of about $1\ \Omega$ in the dark and about $1\text{ k}\Omega$ when illuminated. It is connected in series with a $5\text{ k}\Omega$ resistor to a 1.5 V cell of negligible internal resistance.

9702/12/ /N/12/Q38

The light-dependent resistor is illuminated (in an otherwise dark room) by a flashing light.

Which graph best shows the variation with time t of potential difference V across R ?

223 A copper wire is stretched so that its diameter is reduced from 1.0 mm to a uniform 0.5 mm .

9702/12/ /N/12/Q33

The resistance of the unstretched copper wire is 0.2Ω .

What will be the resistance of the stretched wire?

A 0.4Ω

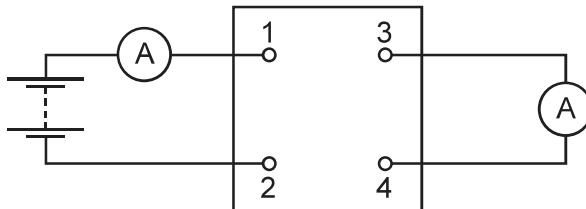
$0.\ \Omega$

1.6Ω

3.2Ω

224 Four statements about potential difference or electromotive force are listed.

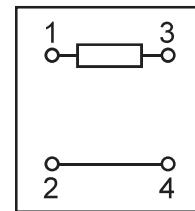
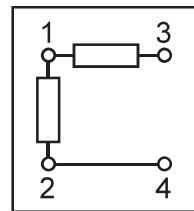
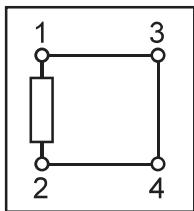
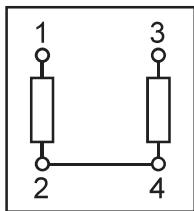
9702/12/ /N/12/Q34


- 1 It involves changing electrical energy into other forms.
- 2 It involves changing other energy forms into electrical energy.
- 3 It is the energy per unit charge to move charge right round a circuit.
- 4 It is the work done per unit charge by the charge moving from one point to another.

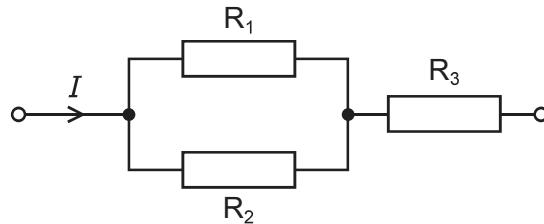
Which statements apply to potential difference and which apply to electromotive force?

	potential difference	electromotive force
A	1 and 3	2 and 4
	1 and 4	2 and 3
	2 and 3	1 and 4
	2 and 4	1 and 3

225 The diagram shows a four-terminal box connected to a battery and two ammeters.





9702/12/ /N/12/Q35

The currents in the two meters are identical.


Which circuit, within the box, will give this result?

A

226 The diagram shows a resistor network. The potential difference across the network is V .

9702/12/ /N/12/Q37

Is the equation shown below correct for the network?

$$V = I (1/R_1 + 1/R_2 + R_3)$$

A Yes, it correctly combines two series resistors with one parallel resistor, and correctly uses hm s^{-1} aw.

Yes, it correctly combines two parallel resistors with one series resistor, and correctly uses hm s^{-1} aw.

No, because it should read $V = I (1/R_1 + 1/R_2 + R_3)$.

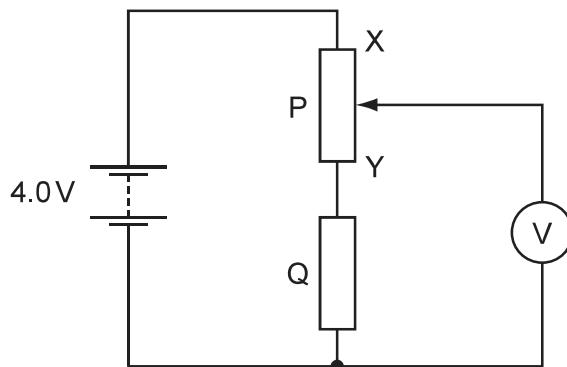
No, because the terms $1/R_2$ and R_3 have different units and cannot be added.

227 A low-voltage supply with an e.m.f. of 20 V and an internal resistance of 1.5Ω is used to supply power to a heater of resistance 6.5Ω in a fish tank.

9702/12/ /J/13/Q33

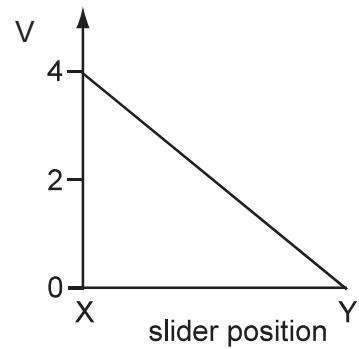
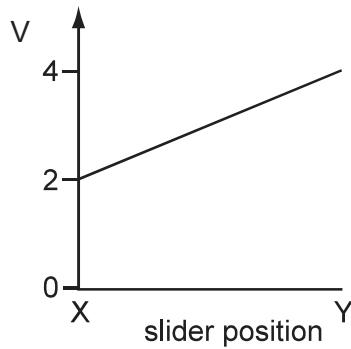
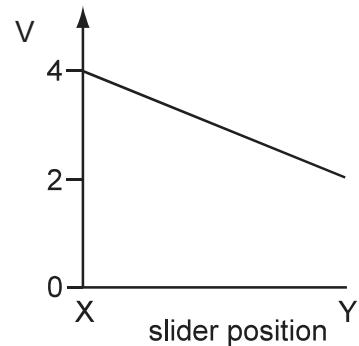
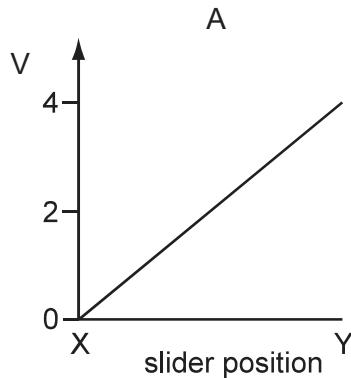
What is the power supplied to the water in the fish tank?

A 41 W


50 W

53 W

62 W

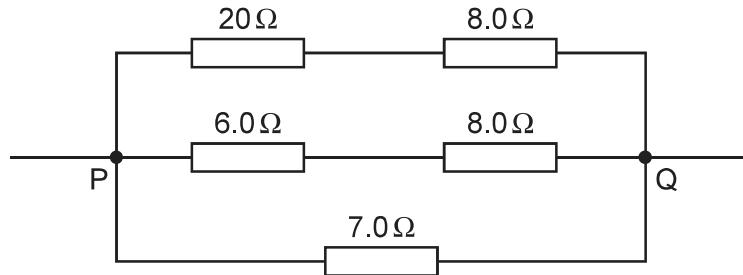




228 In the circuit below, P is a potentiometer of total resistance 10Ω and Q is a fixed resistor of resistance 10Ω . The battery has an e.m.f. of $4.0V$ and negligible internal resistance. The voltmeter has a very high resistance.

9702/12/ /N/12/Q36

The slider on the potentiometer is moved from X to Y and a graph of voltmeter reading V is plotted against slider position.

Which graph is obtained?

229 A power cable has length 2000 m. The cable is made of twelve parallel strands of copper wire, each with diameter 0.51 mm.


9702/12/ /J/13/Q32

What is the resistance of the cable? (resistivity of copper = $1.7 \times 10^{-8} \Omega \text{m}$)

A 0.014Ω 3.5Ω 14Ω 166Ω

230 Five resistors are connected as shown.

9702/12/ /J/13/Q37

What is the total resistance between P and Q?

A 0.25Ω 0.61Ω 4.0Ω 16Ω

231 When a battery is connected to a resistor, the battery gradually becomes warm. This causes the internal resistance of the battery to increase whilst its e.m.f. stays unchanged.

As the internal resistance of the battery increases, how do the terminal potential difference and the output power change, if at all?

9702/11/ /J/13/Q33

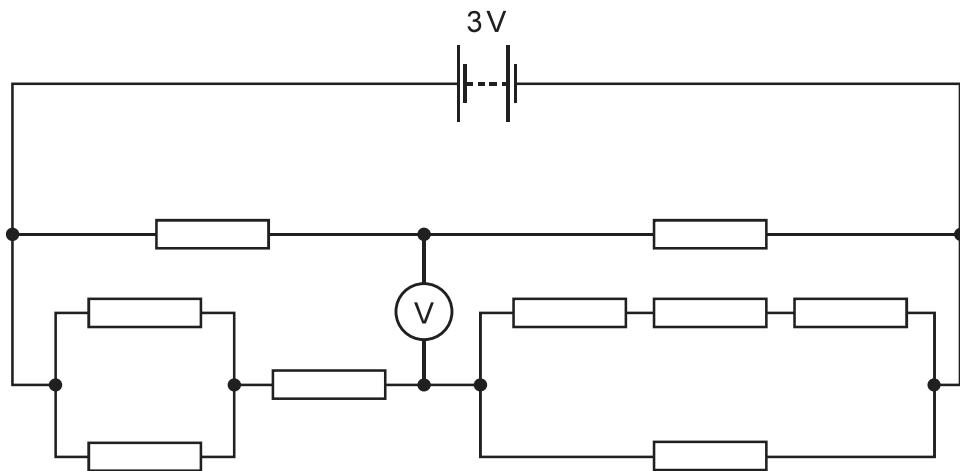
	terminal potential difference	output power
A	decrease	decrease
	decrease	unchanged
	unchanged	decrease
	unchanged	unchanged

232 The principles of conservation of which two quantities are associated with Kirchhoff's first and second laws?

9702/11/ /J/13/Q34

	first law	second law
A	charge	energy
	charge	voltage
	energy	charge
	voltage	charge

233 A filament lamp has a resistance of 10Ω when the current in it is 500 mA.


9702/12/ /J/13/Q34

What is the power transformed in the lamp?

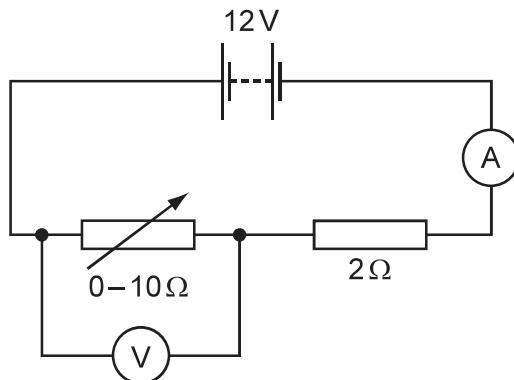
A 45W 50W 90W 1400W

234 A circuit is set up as shown, supplied by a 3 V battery. All resistances are $1\text{ k}\Omega$.

9702/11/ I/J/13/Q35

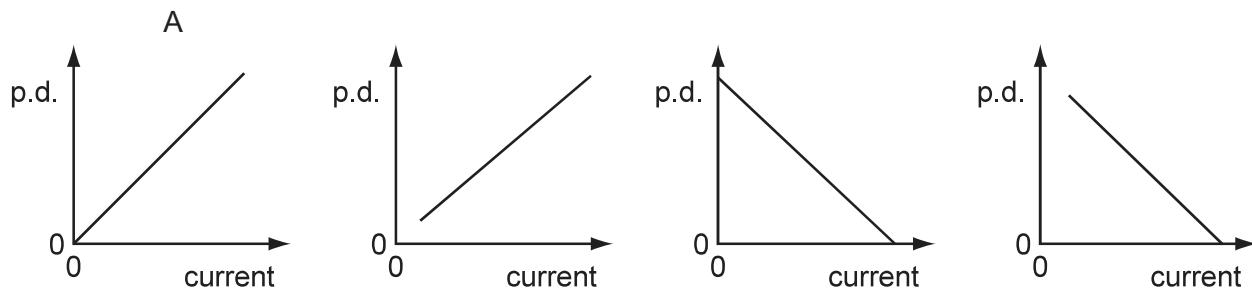
What will be the reading on the voltmeter?

A 0

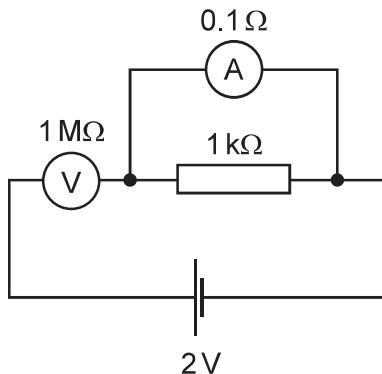

0.5V

1.0V

1.5V

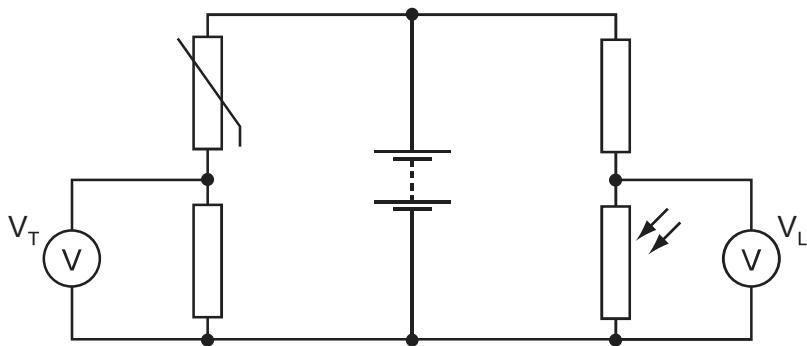

235 A 12 V battery is in series with an ammeter, a 2Ω fixed resistor and a $0\text{--}10\Omega$ variable resistor. A high-resistance voltmeter is connected across the variable resistor.

9702/11/ I/J/13/Q37



The resistance of the variable resistor is changed from zero to its maximum value.

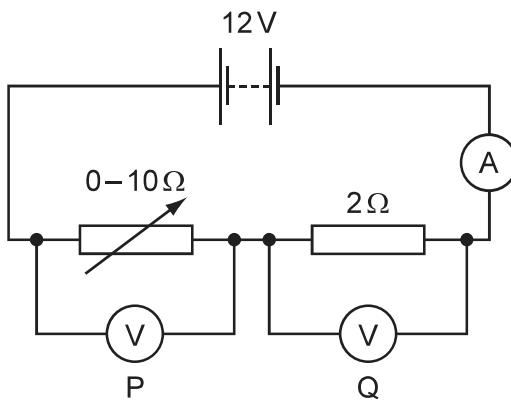
Which graph shows how the potential difference (p.d.) measured by the voltmeter varies with the current measured by the ammeter?


236 The diagram shows an incorrectly connected circuit. The ammeter has a resistance of 0.1Ω and the voltmeter has a resistance of $1\text{ M}\Omega$. 9702/11/ I/J/13/Q36

Which statement is correct?

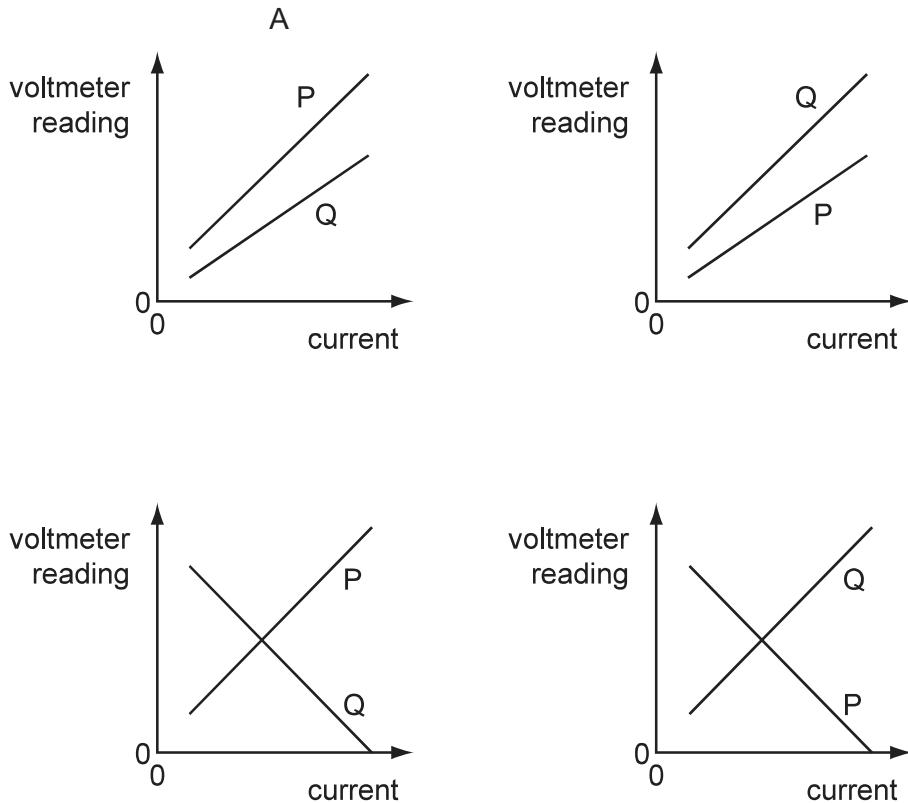
A The ammeter reads 2 mA.
 The ammeter reads 20 A.
 The voltmeter reads zero.
 The voltmeter reads 2 V.

237 In the circuit below, the reading V_T on the voltmeter changes from high to low as the temperature of the thermistor changes. The reading V on the voltmeter changes from high to low as the level of light on the light-dependent resistor (R_L) changes. 9702/12/ I/J/13/Q38

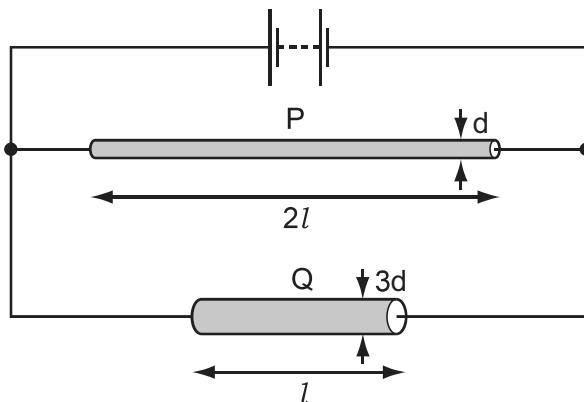

The readings V_T and V_L are both high.

What are the conditions of temperature and light level?

	temperature	light level
A	low	low
	low	high
	high	low
	high	high


238 A 12V battery is in series with an ammeter, a 2Ω fixed resistor and a $0\text{--}10\Omega$ variable resistor. High-resistance voltmeters P and Q are connected across the variable resistor and the fixed resistor respectively, as shown.

9702/12/ /J/13/Q36


The resistance of the variable resistor is changed from its maximum value to zero.

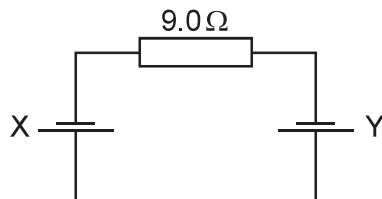
Which graph shows the variation with current of the voltmeter readings?

239 Two wires P and Q made of the same material are connected to the same electrical supply. P has twice the length of Q and one-third of the diameter of Q, as shown in the diagram.

9702/12/ /J/13/Q35

What is the ratio $\frac{\text{current in P}}{\text{current in Q}}$?

A $\frac{2}{3}$


$\frac{2}{9}$

$\frac{1}{6}$

$\frac{1}{1}$

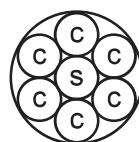
240 Two cells X and Y are connected in series with a resistor of resistance 9.0Ω , as shown.

9702/13/ /J/13/Q31

Cell X has an electromotive force (e.m.f.) of 1.0V and an internal resistance of 1.0Ω . Cell Y has an e.m.f. of 2.0V and an internal resistance of 2.0Ω .

What is the current in the circuit?

A 0.25A


0.17A

0.10A

0.03A

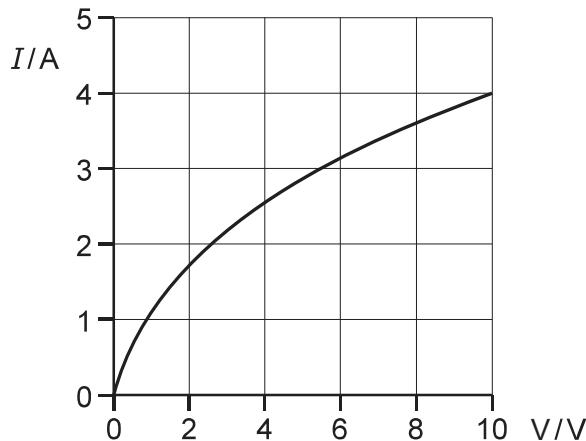
241 An electric power cable consists of six copper wires c surrounding a steel core s.

9702/13/ /J/13/Q34

A length of 1.0km of one of the copper wires has a resistance of 10Ω and 1.0km of the steel core has a resistance of 100Ω .

What is the approximate resistance of a 1.0km length of the power cable?

A 0.61Ω

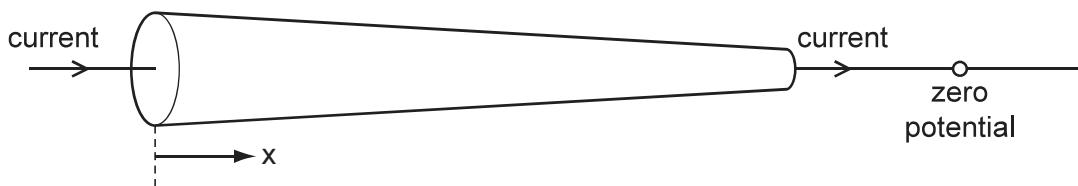

1.6Ω

160Ω

610Ω

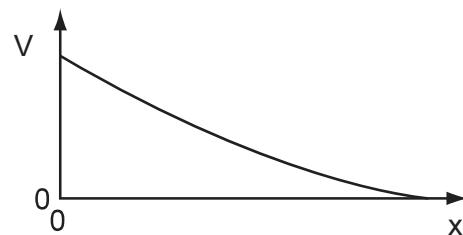
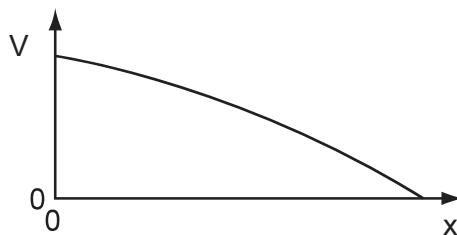
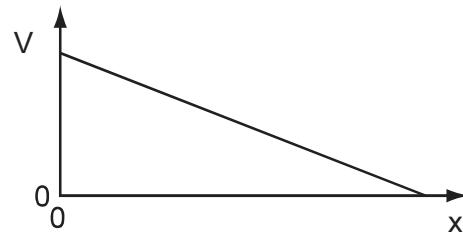
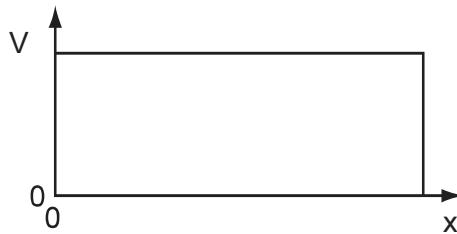
242 The graph shows how current I varies with voltage V for a filament lamp.

9702/13/ /J/13/Q33

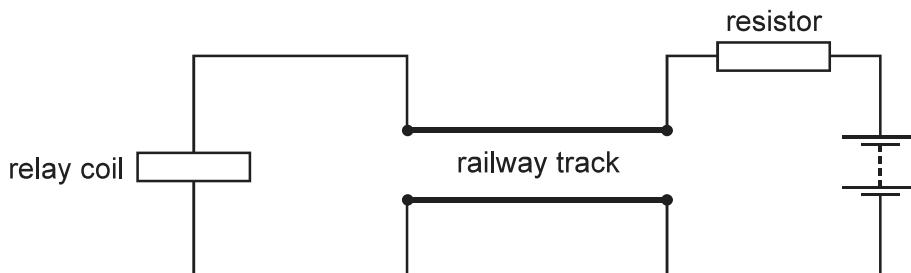


Since the graph is not a straight line, the resistance of the lamp varies with V

Which row gives the correct resistance at the stated value of V ?





A	V/V	R/Ω
A	2.0	1.5
	4.0	3.2
	6.0	1.9
	.0	0.9

243 The circular cross-sectional area of a metal wire varies along its length. There is a current in the wire. The narrow end of the wire is at a reference potential of zero. 9702/13/ /J/13/Q32

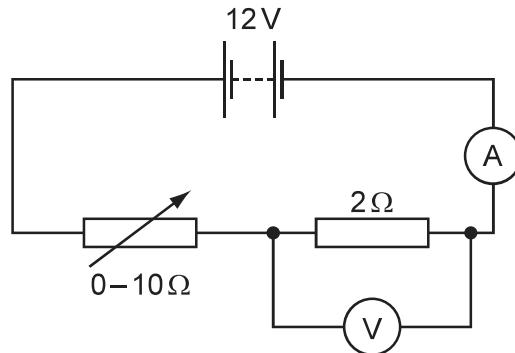

Which graph best represents the variation with distance x along the wire of the potential difference V relative to the reference zero?

A

244 The diagram shows a length of track from a model railway connected to a battery, a resistor and a relay coil.

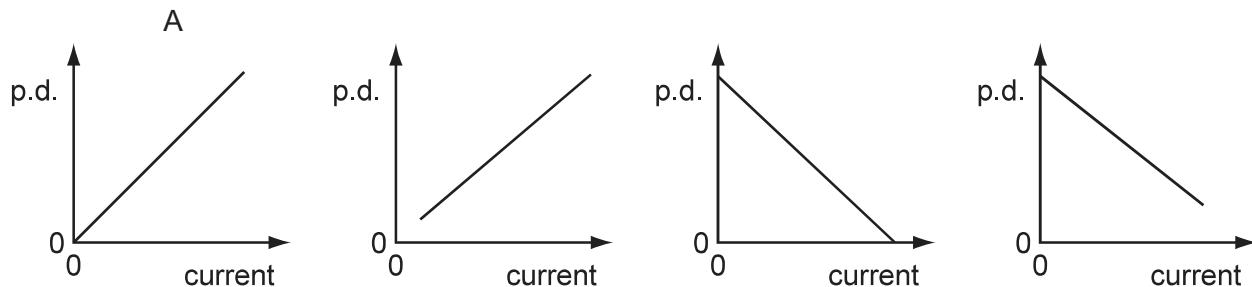
9702/13/ I/J/13/Q35

With no train present, there is a current in the relay coil which operates a switch to turn on a light.

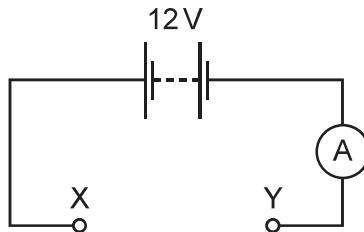

When a train occupies the section of track, most of the current flows through the wheels and axles of the train in preference to the relay coil. The switch in the relay turns off the light.

Why is a resistor placed between the battery and the track?

- A to limit the heating of the wheels of the train
- to limit the energy lost in the relay coil when a train is present
- to prevent a short circuit of the battery when a train is present
- to protect the relay when a train is present

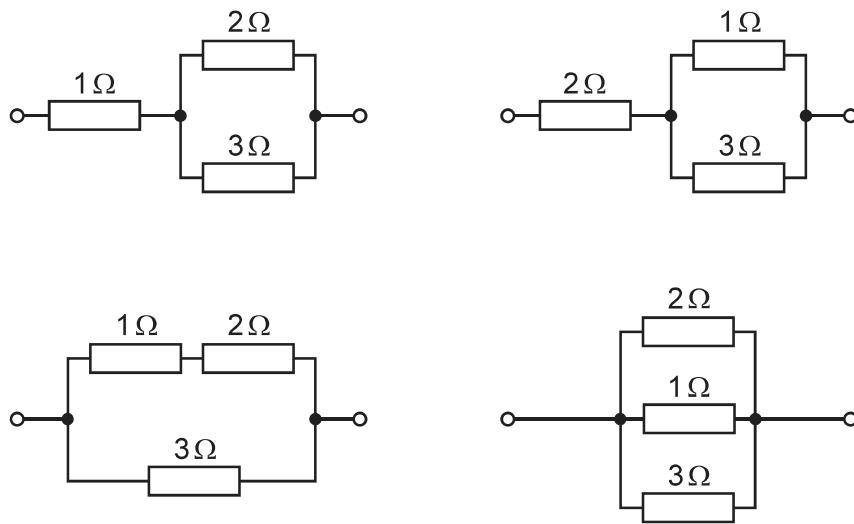

245 A 12V battery is in series with an ammeter, a 2Ω fixed resistor and a $0\text{--}10\Omega$ variable resistor. A high-resistance voltmeter is connected across the fixed resistor.

9702/13/ I/J/13/Q36


The resistance of the variable resistor is changed from zero to its maximum value.

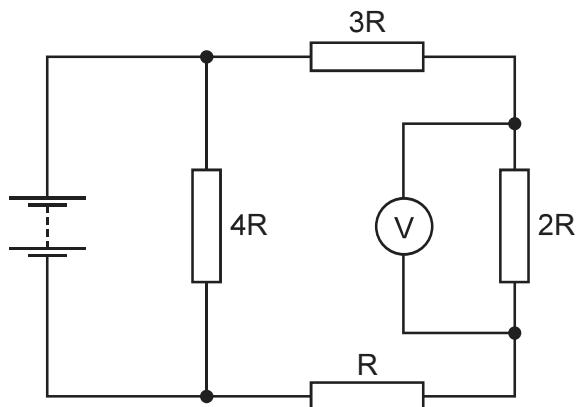
Which graph shows how the potential difference (p.d.) measured by the voltmeter varies with the current measured by the ammeter?

246 In the circuit shown, the battery and ammeter each have negligible resistance.


9702/13/ /J/13/Q37

The following combinations of resistors are placed in turn between the terminals X and Y of the circuit.

Which combination would give an ammeter reading of A?


A

247 Four resistors of resistance R, 2R, 3R and 4R are connected to form a network.

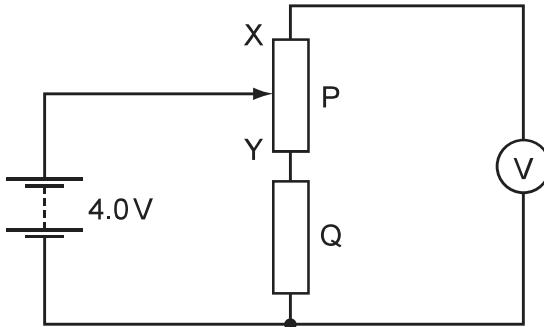
9702/11/ /N/13/Q38

A battery of negligible internal resistance and a voltmeter are connected to the resistor network as shown.

The voltmeter reading is 2V.

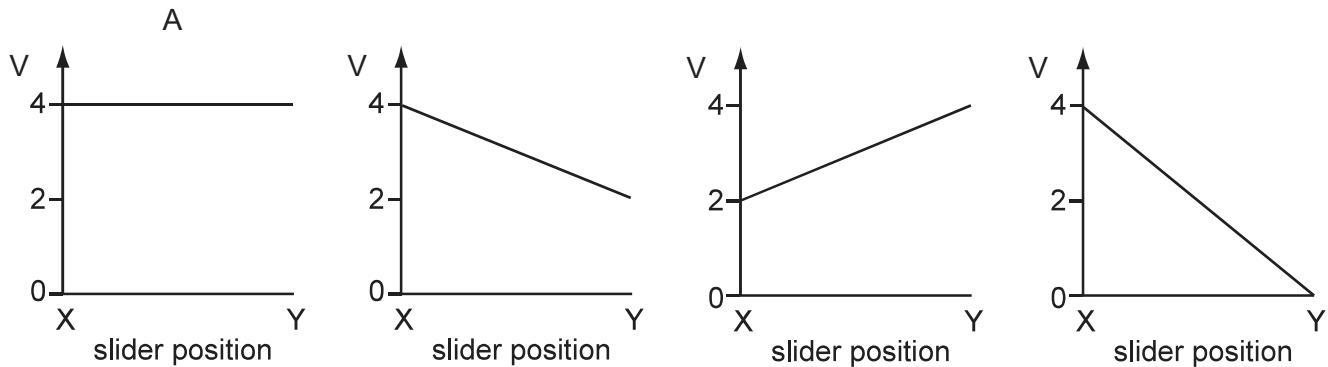
What is the electromotive force (e.m.f.) of the battery?

A 2V

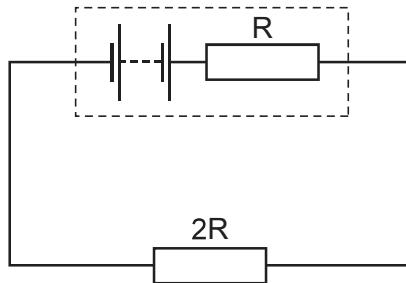

4V

6V

10V


248 In the circuit below, P is a potentiometer of total resistance 10Ω and Q is a fixed resistor of resistance 10Ω . The battery has an electromotive force (e.m.f.) of 4.0V and negligible internal resistance. The voltmeter has a very high resistance.

9702/11/ /N/13/Q36


The slider on the potentiometer is moved from X to Y and a graph of voltmeter reading V is plotted against slider position.

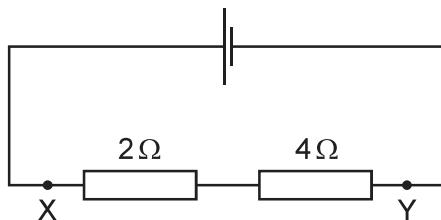
Which graph would be obtained?

249 The diagram shows an electric circuit in which the resistance of the external resistor is $2R$ and the internal resistance of the source is R .

9702/11/ /N/13/Q33

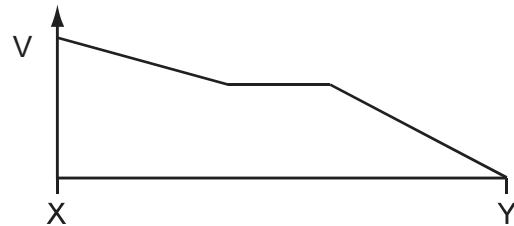
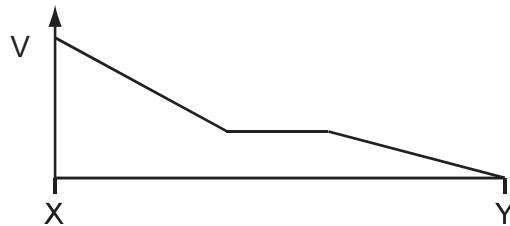
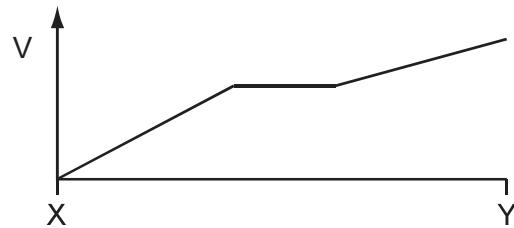
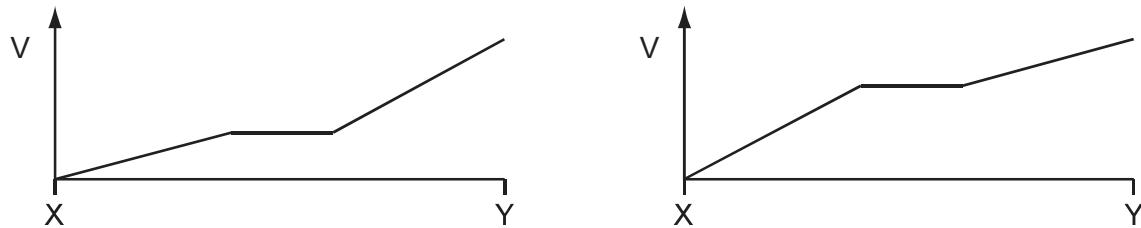
What is the ratio $\frac{\text{power in external resistor}}{\text{power in internal resistance}}$?

A $\frac{1}{4}$


$\frac{1}{2}$

2

4





250 A 2Ω resistor and a 4Ω resistor are connected to a cell.

9702/11/ /N/13/Q37

Which graph shows how the potential V varies with distance between X and Y?

A

251 The wire of a heating element has resistance R . The wire breaks and is replaced by a different wire.

9702/11/ /N/13/Q35

Data for the original wire and the replacement wire are shown in the table.

	length	diameter	resistivity of metal
original wire	l	d	ρ
replacement wire	l	$2d$	2ρ

What is the resistance of the replacement wire?

A $\frac{R}{4}$

$\frac{R}{2}$

R

$2R$

252 The current in a component is reduced uniformly from 100mA to 20mA over a period of $.0\text{s}$.

9702/13/ /N/13/Q32

What is the charge that flows during this time?

A 160m

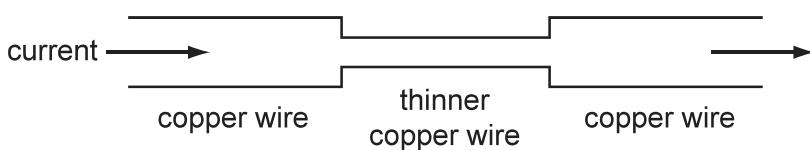
320m

4 0m

640m

253 Two lamps are connected in series to a 250V power supply. One lamp is rated 240V, 60W and the other is rated 10V, 2.5W. 9702/11/ /N/13/Q34

Which statement most accurately describes what happens?


A Both lamps light at less than their normal brightness.

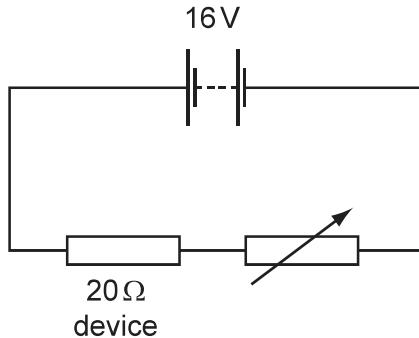
Both lamps light normally.

Only the 60W lamp lights.

The 10V lamp blows.

254 An electric current is passed from a thick copper wire through a section of thinner copper wire before entering a second thick copper wire as shown. 9702/13/ /N/13/Q33

Which statement about the current and the speed of electrons in the wires is correct?


A The current and the speed of the electrons in the thinner wire are both less than in the thicker copper wires.

The current and the speed of the electrons is the same in all the wires.

The current is the same in all the wires but the speed of the electrons in the thinner wire is greater than in the thicker wires.

The current is the same in all the wires but the speed of the electrons in the thinner wire is less than in the thicker wire.

255 An electrical device of fixed resistance 20Ω is connected in series with a variable resistor and a battery of electromotive force (e.m.f.) 16V and negligible internal resistance. 9702/13/ /N/13/Q34

What is the resistance of the variable resistor when the power dissipated in the electrical device is 4.0W?

A 16Ω

36Ω

44Ω

60Ω

256 A copper wire is cylindrical and has resistance R .

9702/13/ /N/13/Q35

What will be the resistance of a copper wire of twice the length and twice the radius?

A $\frac{R}{4}$

$\frac{R}{2}$

R

$2R$

257 The diagram shows the electric motor for a garden pump connected to a 24V power supply by an insulated two-core cable.

9702/13/ /N/13/Q36

The motor does not work so, to find the fault, the negative terminal of a voltmeter is connected to the negative terminal of the power supply and its other end is connected in turn to terminals X and Y at the motor.

Which row represents two readings and a correct conclusion?

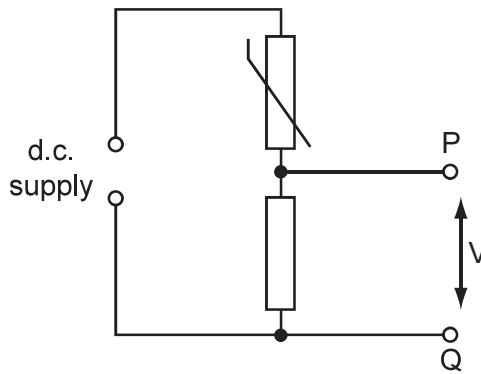
	voltmeter reading when connected to X/V	voltmeter reading when connected to Y/V	conclusion
A	24	0	break in positive wire of cable
	24	12	break in negative wire of cable
	24	24	break in connection within the motor
	24	24	break in negative wire of cable

258 Two wires P and Q made of the same material and of the same length are connected in parallel to the same voltage supply. Wire P has diameter 2 mm and wire Q has diameter 1 mm.

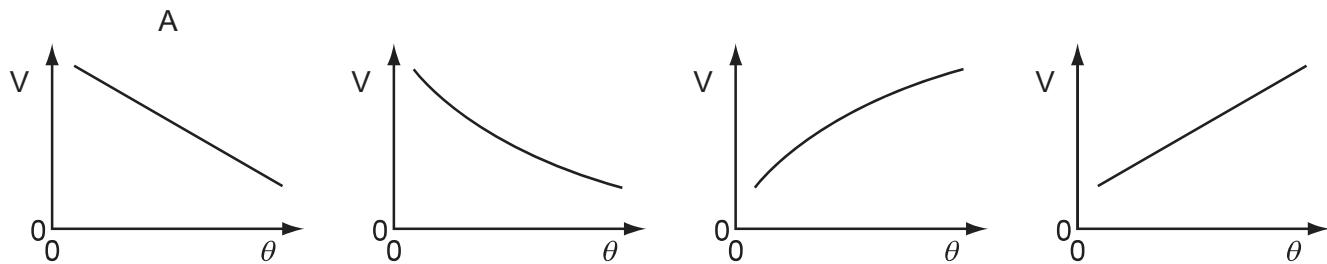
9702/13/ /J/14/Q33

What is the ratio $\frac{\text{current in P}}{\text{current in Q}}$?

A $\frac{1}{4}$

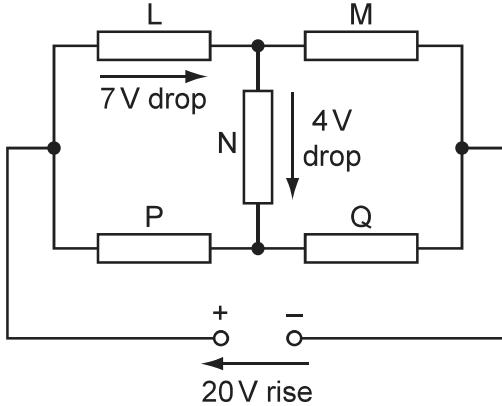

$\frac{1}{2}$

$\frac{2}{1}$


$\frac{4}{1}$

259 In the circuit shown, the resistance of the thermistor decreases as temperature increases.

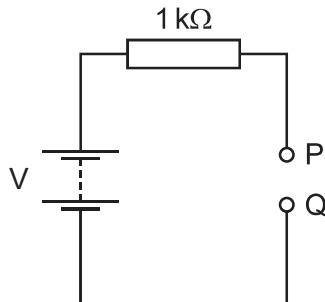
9702/13/ /N/13/Q37



Which graph shows the variation with Celsius temperature θ of potential difference V between points P and Q?

260 A 20V d.c. supply is connected to a circuit consisting of five resistors , , N, P and Q.

9702/13/ /N/13/Q38

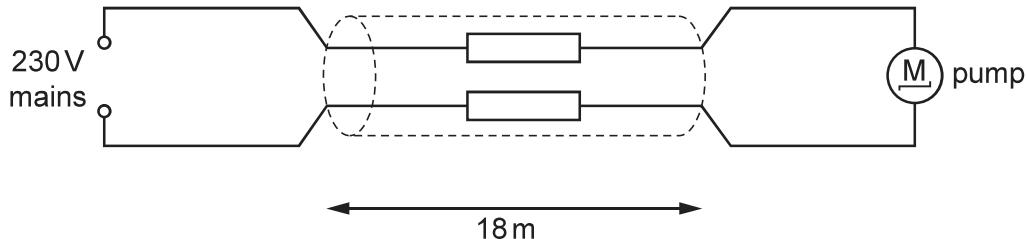

There is a potential drop of 7V across and a further 4V potential drop across N.

What are the potential drops across , P and Q?

	potential drop across /V	potential drop across P/V	potential drop across Q/V
A	9	7	13
	13	7	13
	13	11	9
	17	3	17

261 A battery of electromotive force (e.m.f.) V and negligible internal resistance is connected to a $1\text{ k}\Omega$ resistor, as shown.

9702/12/ /J/14/Q30

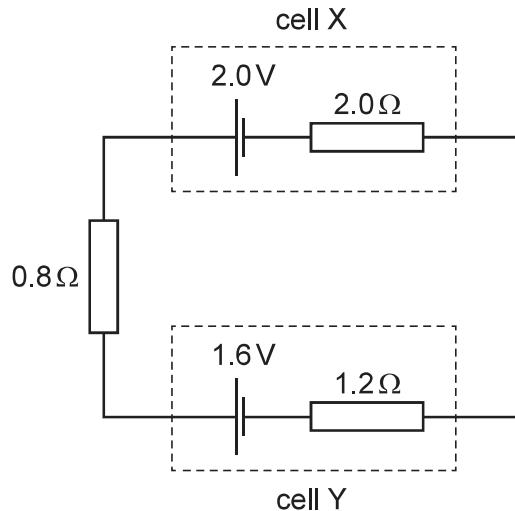

A student attempts to measure the potential difference (p.d.) between points P and Q using two voltmeters, one at a time. The first voltmeter has a resistance of $1\text{ k}\Omega$ and the second voltmeter has a resistance of $1\text{ }\Omega$.

What are the readings of the voltmeters?

	reading on voltmeter with $1\text{ k}\Omega$ resistance	reading on voltmeter with $1\text{ }\Omega$ resistance
A	$\frac{V}{2}$	$\frac{V}{2}$
	$\frac{V}{2}$	V
	V	$\frac{V}{2}$
	V	V

262 The diagram shows an electric pump for a garden fountain connected by an 1 m cable to a 230V mains electrical supply.

9702/12/ /J/14/Q32

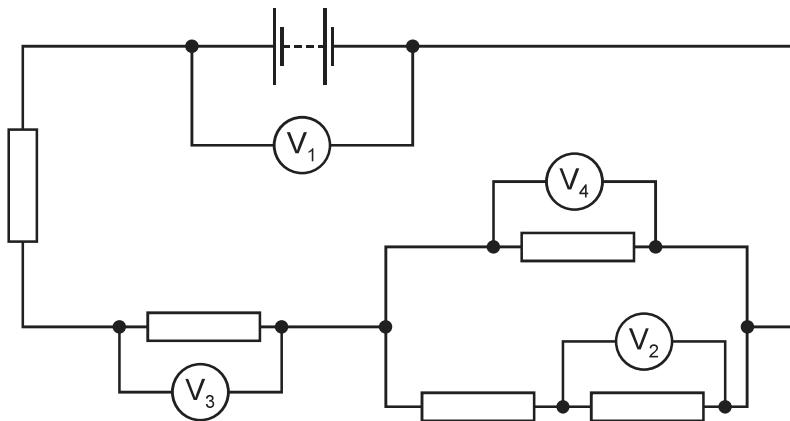

The performance of the pump is acceptable if the potential difference (p.d.) across it is at least 21 V. The current through it is then 0. 3A.

What is the maximum resistance per metre of each of the two wires in the cable if the pump is to perform acceptably?

A $0.40\text{ }\Omega\text{ m}^{-1}$ 0. $0\text{ }\Omega\text{ m}^{-1}$ $1.3\text{ }\Omega\text{ m}^{-1}$ $1.4\text{ }\Omega\text{ m}^{-1}$

263 Cell X has an e.m.f. of 2.0V and an internal resistance of 2.0Ω . Cell Y has an e.m.f. of 1.6V and an internal resistance of 1.2Ω . These two cells are connected to a resistor of resistance 0.8Ω , as shown.

9702/12/ /J/14/Q33

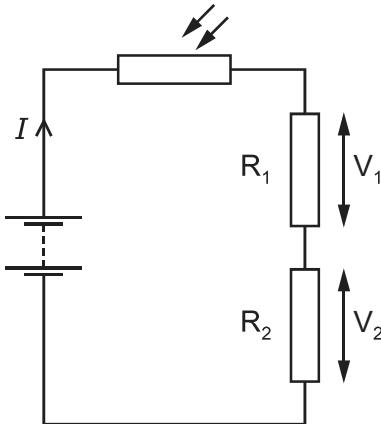


What is the current in cell X?

A 0.10A 0.50A 0.90A 1.0A

264 In the circuit shown, all the resistors are identical.

9702/12/ /J/14/Q36


The reading on voltmeter V_1 is .0V and the reading on voltmeter V_2 is 1.0V.

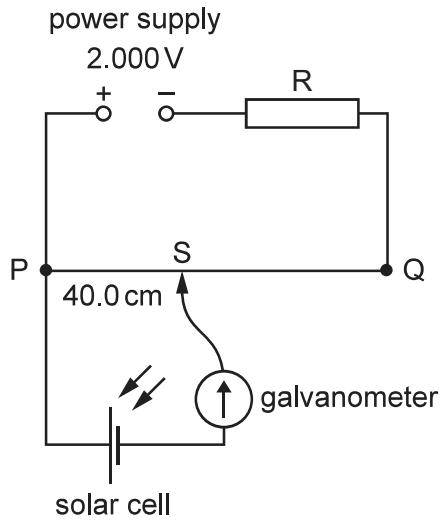
What are the readings on the other voltmeters?

	reading on voltmeter V_3 /V	reading on voltmeter V_4 /V
A	1.5	1.0
	3.0	2.0
	4.5	3.0
	6.0	4.0

265 In the circuit shown, a light-dependent resistor (R) is connected to two resistors R_1 and R_2 . The potential difference (p.d.) across R_1 is V_1 and the p.d. across R_2 is V_2 . The current in the circuit is I .

9702/12/ IJ/14/Q34

Which statement about this circuit is correct?


A The current I increases when the light intensity decreases.

The R is an ohmic conductor.

The p.d. V_2 increases when the light intensity decreases.

The ratio $\frac{V_1}{V_2}$ is independent of light intensity.

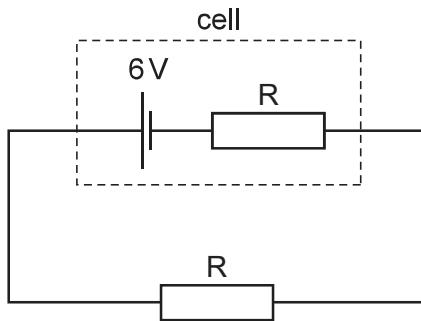
266 A power supply and a solar cell are compared using the potentiometer circuit shown. 9702/12/ IJ/14/Q35

The e.m.f. produced by the solar cell is measured on the potentiometer.

The potentiometer wire PQ is 100.0 cm long and has a resistance of $5.00\ \Omega$. The power supply has an e.m.f. of 2.000V and the solar cell has an e.m.f. of 5.00mV.

Which resistance R must be used so that the galvanometer reads zero when PS = 40.0 cm?

A $395\ \Omega$


795 Ω

995 Ω

1055 Ω

267 A cell has an electromotive force (e.m.f.) of 6V and internal resistance R . An external resistor, also of resistance R , is connected across this cell, as shown.

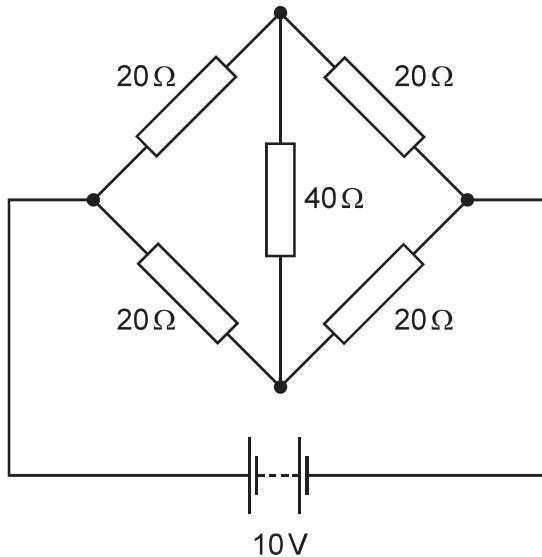
9702/13/ /J/14/Q34

Power P is dissipated by the external resistor.

The cell is replaced by a different cell that has an e.m.f. of 6V and negligible internal resistance.

What is the new power that is dissipated in the external resistor?

A 0.5P

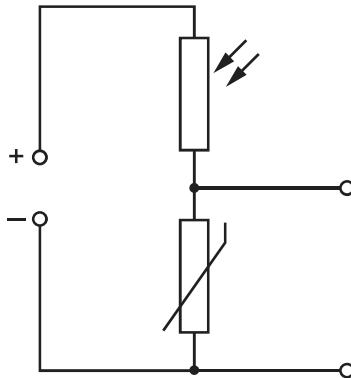

P

2P

4P

268 What is the current in the 40Ω resistor of the circuit shown?

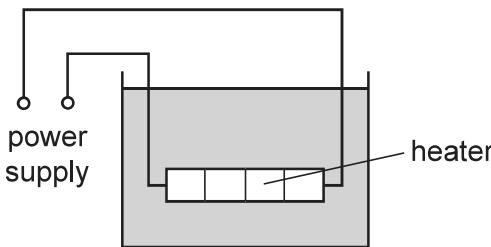
9702/13/ /J/14/Q37


A zero

0.13A

0.25A

0.50A


269 The diagram shows a light-dependent resistor (R) and a thermistor forming a potential divider.

Under which set of conditions will the potential difference across the thermistor have the greatest value?

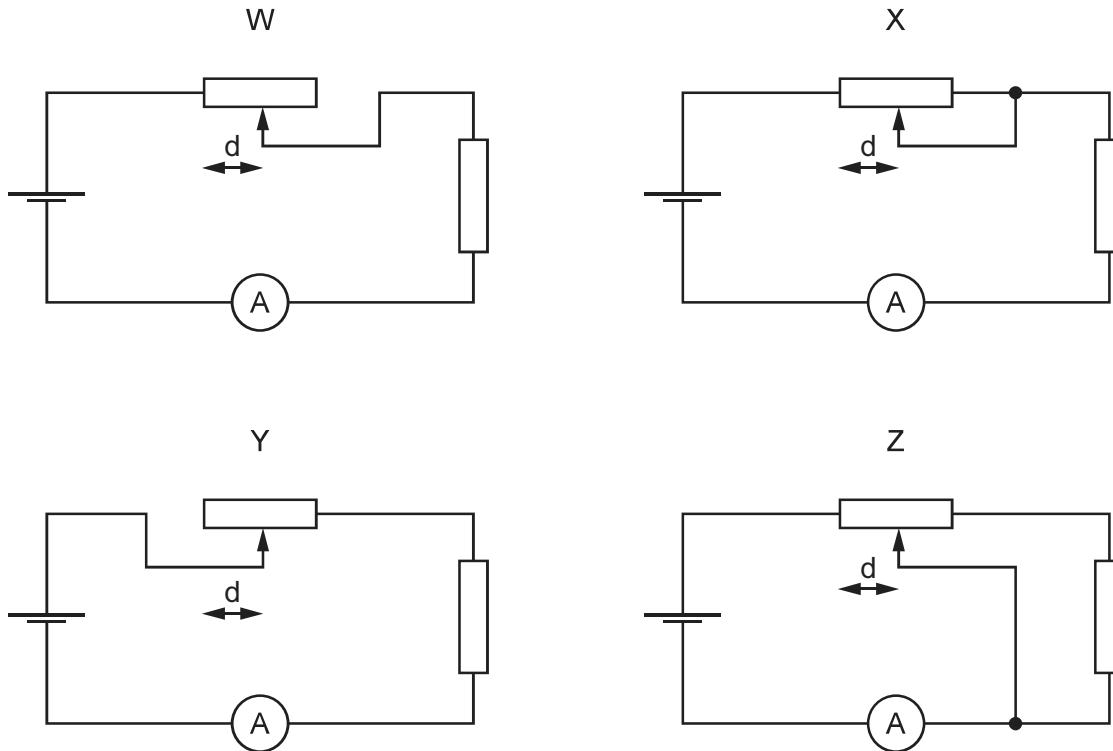
	illumination	temperature
A	low	low
	high	low
	low	high
	high	high

270 The diagram shows a low-voltage circuit for heating the water in a fish tank.

The heater has a resistance of 3.0Ω . The power supply has an e.m.f. of 12V and an internal resistance of 1.0Ω .

At which rate is energy supplied to the heater?

A 27W 36W 4 W 64W


271 A copper wire is to be replaced by an aluminium alloy wire of the same length and resistance. Copper has half the resistivity of the alloy.

What is the ratio $\frac{\text{diameter of alloy wire}}{\text{diameter of copper wire}}$?

$$A = \sqrt{2} \quad 2 \quad 2\sqrt{2} \quad 4$$

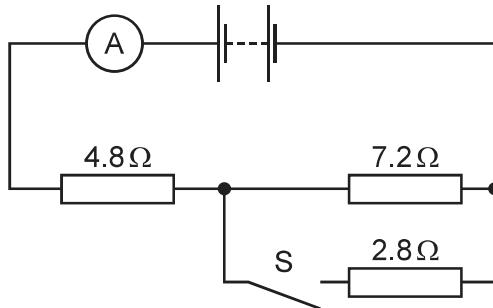
272 The diagrams show the same cell, ammeter, potentiometer and fixed resistor connected in different ways.

9702/13/ /J/14/Q36

The distance d between the sliding contact and a particular end of the potentiometer is varied. The current measured is then plotted against the distance d .

For which two circuits will the graphs be identical?

A W and X


W and Y

X and Y

Y and Z

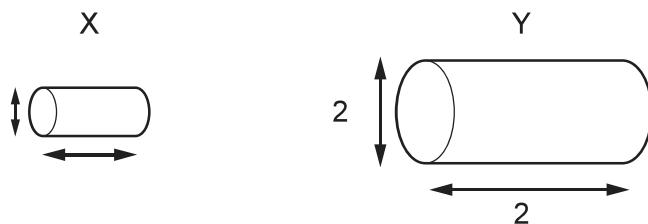
273 A battery of negligible internal resistance is connected to a resistor network, an ammeter and a switch S , as shown.

9702/13/ /J/14/Q38

When S is open, the reading on the ammeter is 250 mA.

When S is closed, what is the change in the reading on the ammeter?

A 1.07 A

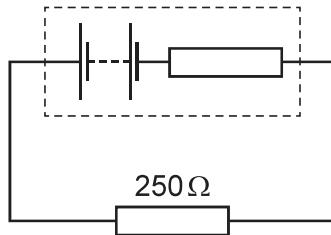

1.32 A

190 mA

440 mA

274 Two electrically-conducting cylinders X and Y are made from the same material.

Their dimensions are as shown.



The resistance between the ends of each cylinder is measured.

What is the ratio $\frac{\text{resistance of X}}{\text{resistance of Y}}$?

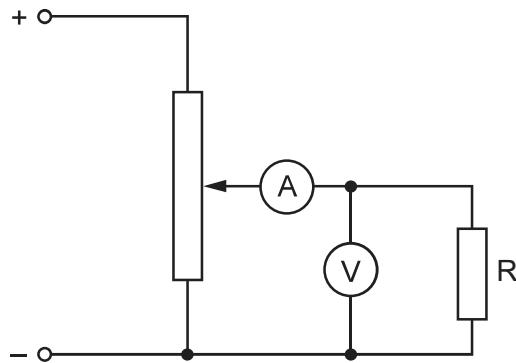
A $\frac{2}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{4}$

275 A battery, with a constant internal resistance, is connected to a resistor of resistance 250Ω , as shown.

The current in the resistor is 40 mA for a time of 60 s . During this time 6.0 J of energy is lost in the internal resistance.

What are the energy supplied to the external resistor during the 60 s and the e.m.f. of the battery?

	energy/J	e.m.f./V
A	2.4	2.4
	2.4	7.5
	24	10.0
	24	12.5


276 Which symbol represents a component whose resistance is designed to change with temperature?

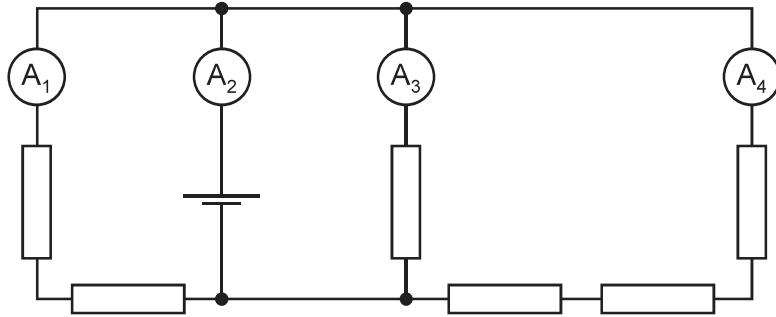
A

277 In the circuit below, a voltmeter of resistance R_V and an ammeter of resistance R_A are used to measure the resistance R of the fixed resistor.

9702/11/ /J/14/Q33

Which condition is necessary for an accurate value to be obtained for R ?

A R is much smaller than R_V .


R is much smaller than R_A .

R is much greater than R_V .

R is much greater than R_A .

278 In the circuit shown, all the resistors are identical and all the ammeters have negligible resistance.

9702/11/ /J/14/Q34

The reading on ammeter A_1 is 0.6 A.

What are the readings on the other ammeters?

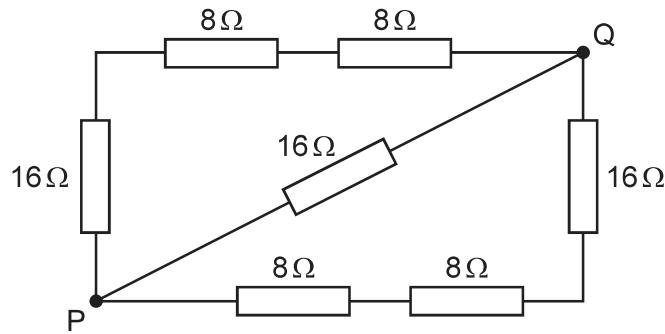
A	reading on ammeter A_2/A	reading on ammeter A_3/A	reading on ammeter A_4/A
A	1.0	0.3	0.1
	1.4	0.6	0.2
	1.	0.9	0.3
	2.2	1.2	0.4

279 The potential difference across a component in a circuit is 2.0 V.

9702/11/ /J/14/Q35

How many electrons must flow through this component in order for it to be supplied with 4. J of energy?

A 2.6×10^{19}


1.5 $\times 10^{19}$

3.0 $\times 10^{19}$

6.0 $\times 10^{19}$

280 What is the total resistance between points P and Q in this network of resistors?

9702/11/ /J/14/Q36

A Ω

16Ω

24Ω

32Ω

281 The combined resistance R_T of two resistors of resistances R_1 and R_2 connected in parallel is given by the formula shown.

9702/11/ /N/14/Q35

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$

Which statement is used in the derivation of this formula?

A The currents through the two resistors are equal.

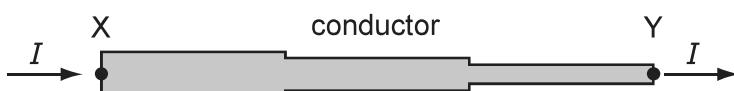
The potential difference across each resistor is the same.

The supply current is split between the two resistors in the same ratio as the ratio of their resistances.

The total power dissipated is the sum of the powers dissipated in the two resistors separately.

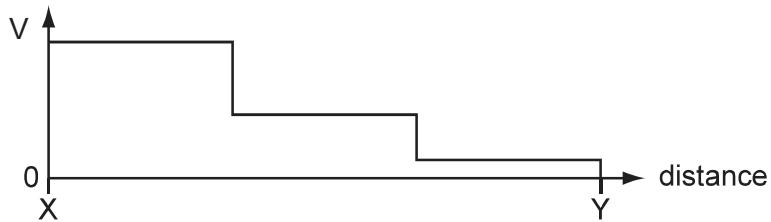
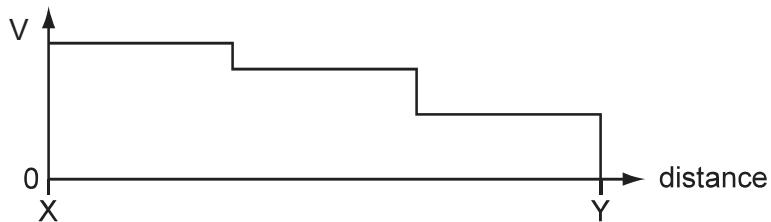
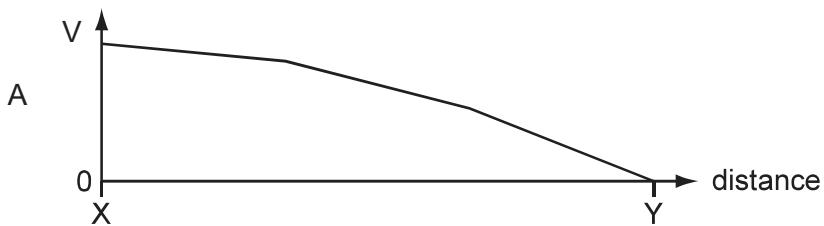
282 A pencil is used to draw a line of length 30 cm and width 1.2 mm. The resistivity of the material in the pencil is $2.0 \times 10^{-5} \Omega \text{m}$ and the resistance of the line is $40 \text{k}\Omega$. 9702/11/ /N/14/Q32

What is the thickness of the line?


A $1.25 \times 10^{-10} \text{m}$

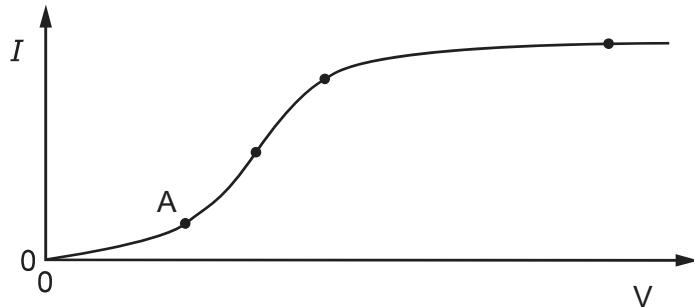
$1.25 \times 10^{-1} \text{m}$

$1.25 \times 10^{-7} \text{m}$

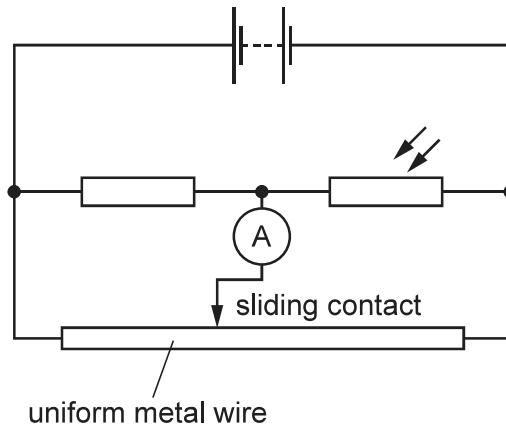



$1.25 \times 10^{-5} \text{m}$

283 A conductor consists of three wires connected in series. The wires are all made of the same metal but have different cross-sectional areas. There is a current I in the conductor. 9702/11/ /N/14/Q33

Point Y on the conductor is at zero potential.


Which graph best shows the variation of potential V with distance along the conductor?

284 The graph shows how the electric current I through a conducting liquid varies with the potential difference V across it.


9702/11/ /N/14/Q34

At which point on the graph does the liquid have the smallest resistance?

285 In the potentiometer circuit shown, the reading on the ammeter is zero.

9702/11/ /N/14/Q36

The light-dependent resistor (R) is then covered up and the ammeter gives a non-zero reading.

Which change could return the ammeter reading to zero?

A decrease the supply voltage.

Increase the supply voltage.

Move the sliding contact to the left.

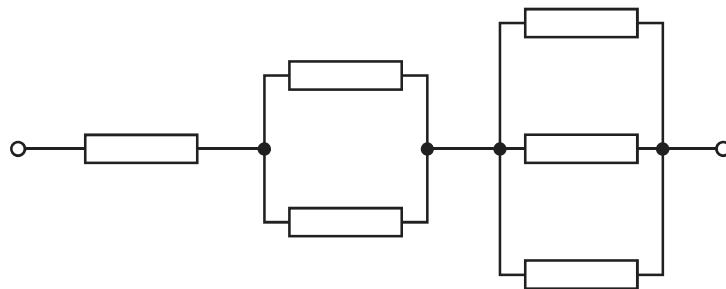
Move the sliding contact to the right.

286 A metal wire of length 0.50 m has a resistance of 12Ω .

9702/13/ /N/14/Q33

What is the resistance of a wire of length 2.0 m and made of the same material, but with half the diameter?

A 12Ω


4 Ω

96Ω

192Ω

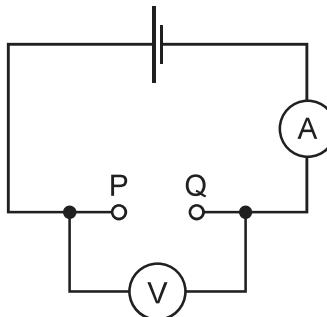
287 Six resistors, each of resistance R , are connected as shown.

9702/11/ /N/14/Q37

The combined resistance is $66\text{ k}\Omega$.

What is the value of R ?

A $11\text{ k}\Omega$


$1\text{ k}\Omega$

$22\text{ k}\Omega$

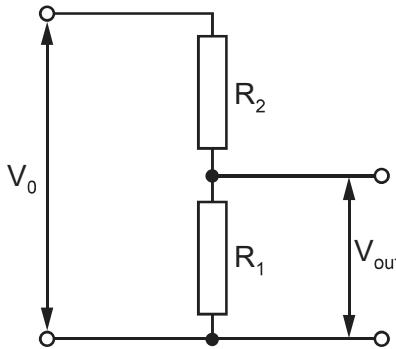
$36\text{ k}\Omega$

288 A student found two unmarked resistors. To determine the resistance of the resistors, the circuit below was set up. The resistors were connected in turn between P and Q, noting the current readings. The voltage readings were noted without the resistors and with each resistor in turn.

9702/13/ /N/14/Q34

The results were entered into a spreadsheet as shown.

1.5	1.3	2	46
1.5	1.4	14	100

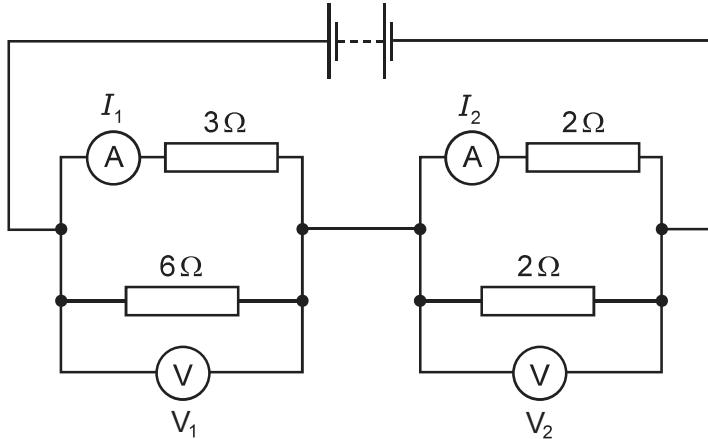

The student forgot to enter the column headings.

Which order of the headings would be correct?

A	e.m.f./V	V/V	R/ Ω	I /mA
	V/V	e.m.f./V	R/ Ω	I /mA
	V/V	e.m.f./V	I /mA	R/ Ω
	e.m.f./V	V/V	I /mA	R/ Ω

289 A potential divider consists of resistors of resistance R_1 and R_2 connected in series across a source of potential difference V_0 . The potential difference across R_1 is V_{out} .

9702/13/ /N/14/Q35

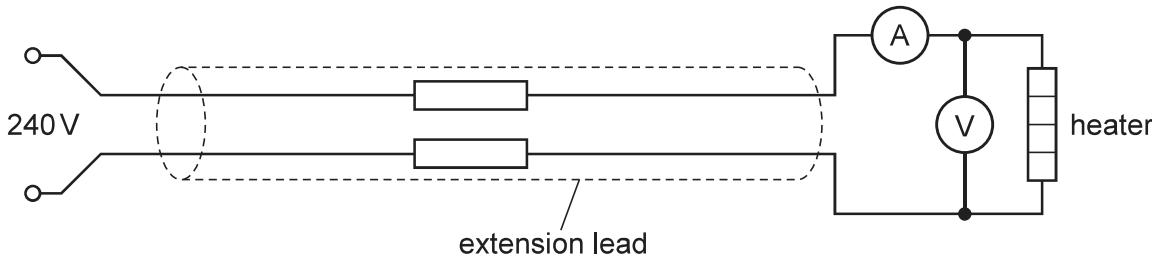


Which changes to R_1 and R_2 will increase the value of V_{out} ?

	R_1	R_2
A	doubled	doubled
	doubled	halved
	halved	doubled
	halved	halved

290 In the circuit shown, the ammeters have negligible resistance and the voltmeters have infinite resistance.

9702/13/ /N/14/Q37



The readings on the meters are I_1 , I_2 , V_1 and V_2 , as labelled on the diagram.

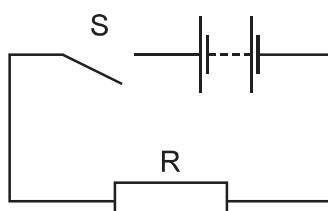
Which statement is correct?

A I_1 I_2 and V_1 V_2
 B I_1 I_2 and V_1 V_2
 C I_1 I_2 and V_1 V_2
 D I_1 I_2 and V_1 V_2

291 An extension lead is used to connect a 240 V electrical supply to a heater as shown. 9702/13/ /N/14/Q36

A voltmeter measures the potential difference (p.d.) across the heater as 216 V and an ammeter measures the current through the heater as 7.7 A.

What is the total resistance of the extension lead?


A 3.1Ω B 6.2Ω C 2Ω D 31Ω

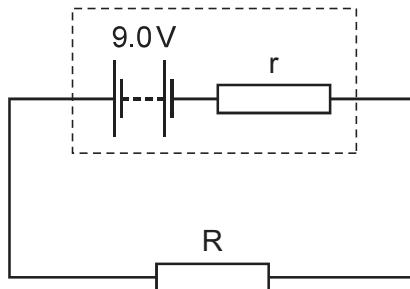
292 A pedal bicycle is fitted with an electric motor. The rider switches on the motor for a time of 3.0 minutes. A constant current of 3.5 A in the electric motor is provided from a battery with a terminal voltage of 24 V. 9702/13/ /J/15/Q32

What is the energy supplied by the battery?

A 4 J B 250 J C 630 J D 15 000 J

293 The diagram shows a simple circuit. 9702/13/ /J/15/Q33

Which statement is correct?

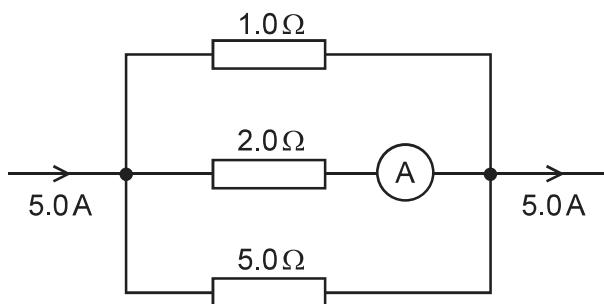

A When switch S is closed, the electromotive force (e.m.f.) of the battery falls because work is done against the internal resistance of the battery.

When switch S is closed, the e.m.f. of the battery falls because work is done against the resistance of R.

When switch S is closed, the potential difference across the battery falls because work is done against the internal resistance of the battery.

When switch S is closed, the potential difference across the battery falls because work is done against the resistance of R.

294 A simple circuit is formed by connecting a resistor of resistance R between the terminals of a battery of electromotive force (e.m.f.) 9.0 V and constant internal resistance r . 9702/13/ /J/15/Q34



A charge of 6.0 C flows through the resistor in a time of 2.0 minutes causing it to dissipate 4 J of thermal energy.

What is the internal resistance r of the battery?

A 0.17Ω B 0.33Ω C 20Ω D 160Ω

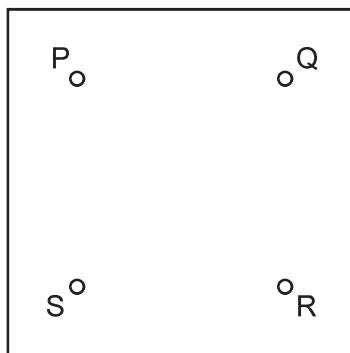
295 The diagram shows part of a current-carrying circuit. The ammeter has negligible resistance. 9702/13/ /J/15/Q37

What is the reading on the ammeter?

A 0.7A B 1.3A C 1.5A D 1.7A

296 Which statement is not valid? 9702/12/ /J/15/Q33

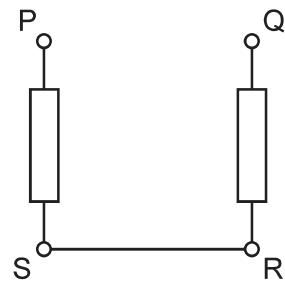
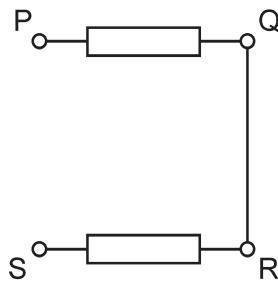
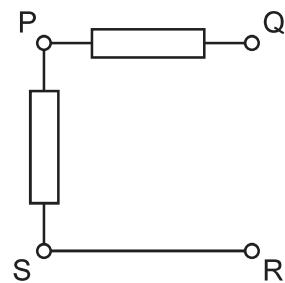
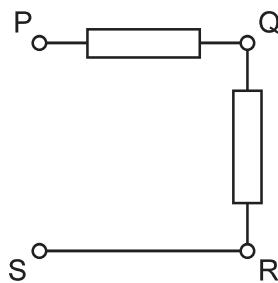
A Current is the speed of the charged particles that carry it.


Electromotive force (e.m.f.) is the energy converted to electrical energy from other forms per unit charge.

The potential difference (p.d.) between two points is the work done per unit charge when moving charge from one point to the other.

The resistance between two points is the p.d. between the two points per unit current.

297 A box with four terminals P, Q, R and S contains two identical resistors.





9702/13/ I/J/15/Q36

When a battery of electromotive force (e.m.f.) E and negligible internal resistance is connected across PS, a high-resistance voltmeter connected across QR reads $\frac{E}{2}$.

Which diagram shows the correct arrangement of the two resistors inside the box?

A

298 A source of e.m.f. 9.0 mV has an internal resistance of 6.0Ω .

9702/13/ I/J/15/Q35

It is connected across a galvanometer of resistance 30Ω .

What is the current in the galvanometer?

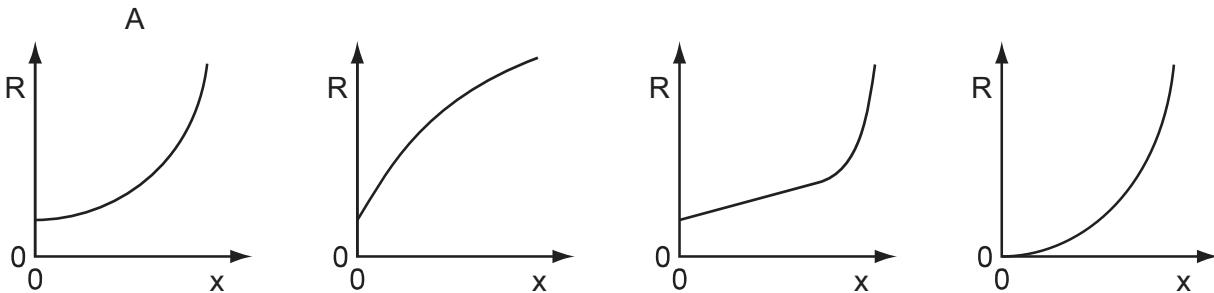
A 250 A

300 A

1.5 mA

2.5 mA

299 Which unit is not used in either the definition of the coulomb or the definition of the volt?


A ampere
joule
ohm
second

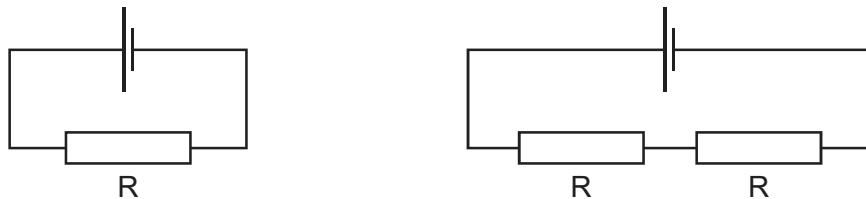
9702/12/ /J/15/Q31

300 When a thin metal wire is stretched, it becomes longer and thinner. This causes a change in the resistance of the wire. The volume of the wire remains constant.

9702/12/ /J/15/Q32

Which graph could represent the variation with extension x of the resistance R of the wire?

301 A cell of e.m.f. E delivers a charge Q to an external circuit.


9702/12/ /J/15/Q34

Which statement is correct?

A The energy dissipation in the external circuit is EQ .
The energy dissipation within the cell is EQ .
The external resistance is EQ .
The total energy dissipation in the cell and the external circuit is EQ .

302 The diagrams show two different circuits.

9702/11/ /J/15/Q33

The cells in each circuit have the same electromotive force and zero internal resistance. The three resistors each have the same resistance R .

In the circuit on the left, the power dissipated in the resistor is P .

What is the total power dissipated in the circuit on the right?

A $\frac{P}{4}$ $\frac{P}{2}$ P $2P$

303 Each of Kirchhoff's two laws presumes that some quantity is conserved.

9702/12/ /J/15/Q35

Which row states Kirchhoff's first law and names the quantity that is conserved?

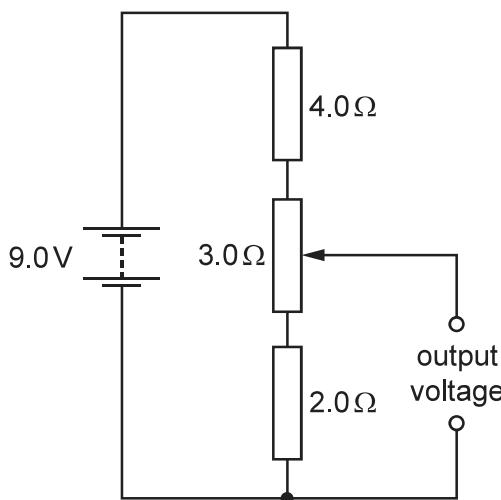
	statement	quantity	
A	the algebraic sum of currents into a junction is zero	charge	
	the algebraic sum of currents into a junction is zero	energy	
	the e.m.f. in a loop is equal to the algebraic sum of the product of current and resistance round the loop	charge	
	the e.m.f. in a loop is equal to the algebraic sum of the product of current and resistance round the loop	energy	

304 Which equation that links some of the following terms is correct?

9702/11/ /J/15/Q34

potential difference (p.d.)	V
current	I
resistance	R
charge	Q
energy	E
power	P
time	t

$$A \quad P = \frac{Q^2 R}{t}$$

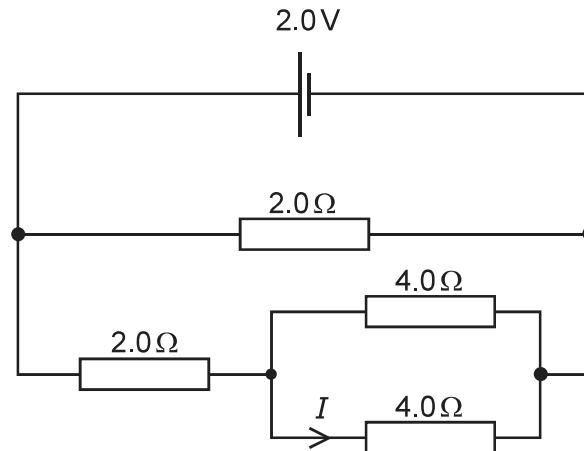

$$ER^2 = V^2 t$$

$$\frac{VI}{P} = t$$

$$PQ = EI$$

305 A potential divider circuit consists of fixed resistors of resistance 2.0Ω and 4.0Ω connected in series with a 3.0Ω resistor fitted with a sliding contact. These are connected across a battery of e.m.f. 9.0 V and zero internal resistance, as shown.

9702/12/ /J/15/Q36

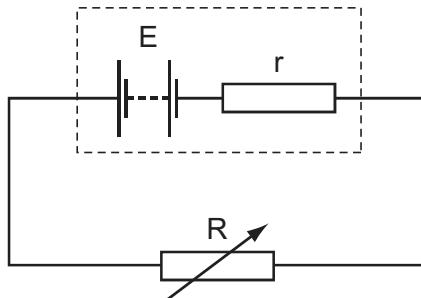


What are the maximum and the minimum output voltages of this potential divider circuit?

	maximum voltage/V	minimum voltage/V
A	4.0	2.0
	5.0	2.0
	9.0	0
	9.0	2.0

306 A cell of e.m.f. 2.0 V and negligible internal resistance is connected to a network of resistors as shown.

9702/12/ /J/15/Q37



What is the current I ?

A 0.25 A B 0.33 A C 0.50 A D 1.5 A

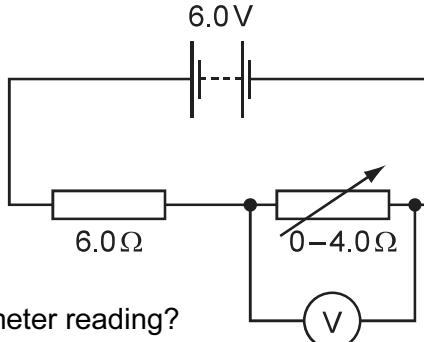
307 A battery with e.m.f. E and internal resistance r is connected in series with a variable external resistor.

9702/11/ /J/15/Q36

The value of the external resistance R is slowly increased from zero.

Which statement is correct? (Ignore any temperature effects.)

A The potential difference across the external resistance decreases.


The potential difference across the internal resistance increases.

The power dissipated in r increases and then decreases.

The power dissipated in R increases and then decreases.

308 A battery of electromotive force (e.m.f.) 6.0 V and negligible internal resistance is connected in series with a resistor of resistance 6.0Ω and a variable resistor of resistance from zero to 4.0Ω . A voltmeter is connected across the variable resistor. The resistance of the variable resistor is changed.

9702/11/ /J/15/Q37

What is the range of the voltmeter reading?

A 0V 2.4V

0V 3.6V

2.4V 6.0V

3.6V 6.0V

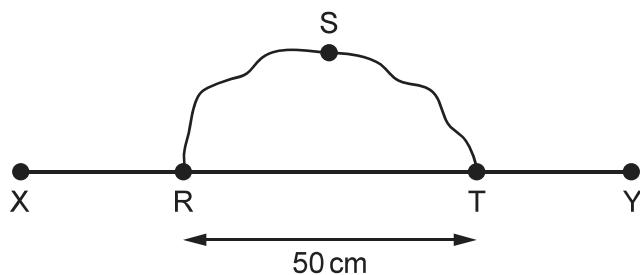
309 The charge that an electric battery can deliver is specified in ampere-hours.

9702/11/ /J/15/Q35

For example, a battery of capacity 40 ampere-hours could supply, when fully charged, 0.2A for 200 hours.

What is the maximum energy that a fully charged 12V, 40 ampere-hour battery could supply?

A 1.7 kJ


29 kJ

1.7 J

29 J

310 A wire RST is connected to another wire XY as shown.

9702/11/ IJ/15/Q38

Each wire is 100 cm long with a resistance per unit length of $10\Omega\text{m}^{-1}$.

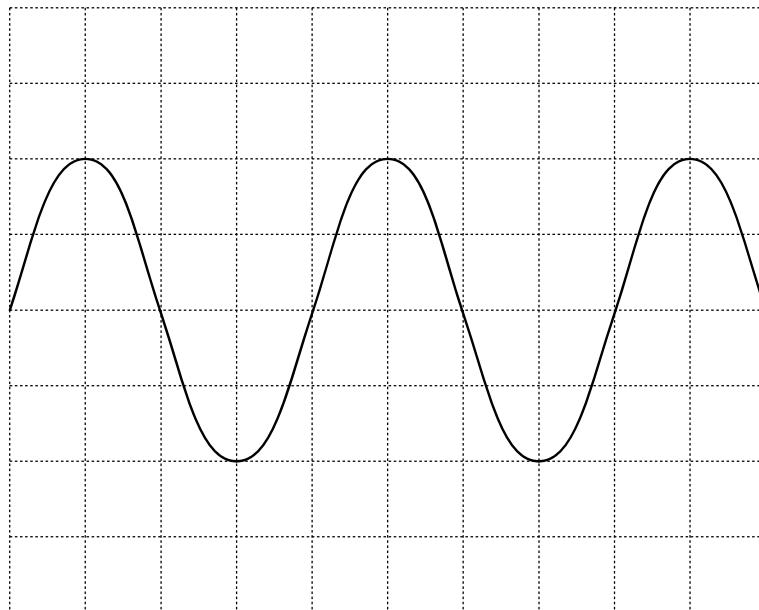
What is the total resistance between X and Y?

A 3.3Ω

5.0Ω

$.3\Omega$

13.3Ω


1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum?

9702/1/M/J/02/Q25

	frequency	speed (in a vacuum)
A	decreases	decreases
	decreases	remains constant
	increases	remains constant
	increases	increases

2 The diagram shows a cathode-ray oscilloscope trace of a sound wave. The time-base is calibrated at 2.0 ms cm^{-1} .

9702/1/M/J/02/Q26

What is the frequency of the sound wave?

A 62.5 Hz 125 Hz 250 Hz 500 Hz

3 Which statement correctly relates the intensity of a sound wave to the vibrations of the molecules?

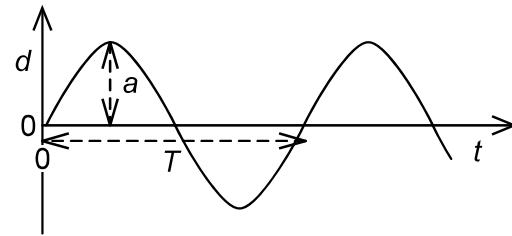
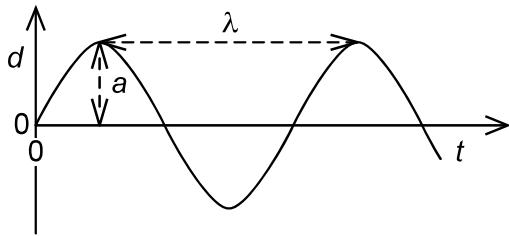
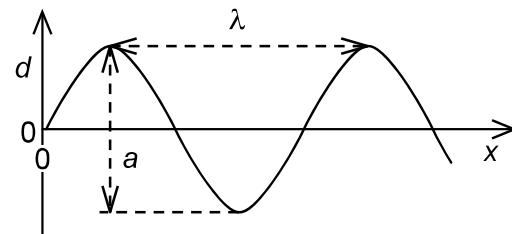
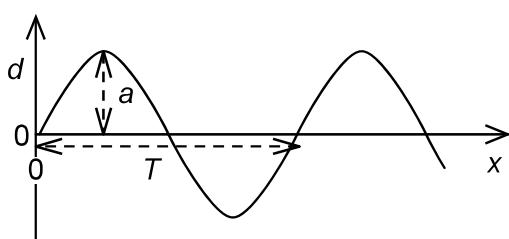
9702/1/M/J/02/Q27

A intensity \propto amplitude
 intensity \propto (amplitude) 2
 intensity \propto displacement
 intensity \propto (displacement) 2

4 Which value is a possible wavelength for radiation in the microwave region of the electromagnetic spectrum?

9702/1/O/N/02/Q25

A $3 \times 10^{-2} \text{ m}$ 3 $\times 10^{-5} \text{ m}$ 3 $\times 10^{-8} \text{ m}$ 3 $\times 10^{-10} \text{ m}$





5 The four graphs represent a progressive wave on a stretched string. Graphs A and show how the displacement d varies with distance x along the string at one instant. Graphs and show how the displacement d varies with time t at a particular value of x .

9702/1/O/N/02/Q26

The labels on the graphs are intended to show the wavelength λ , the period T , and the amplitude a of the wave, but only one graph is correctly labelled.

Which graph is correctly labelled?

A

6 A wave of amplitude a has an intensity of 3.0 W m^{-2} .

9702/1/O/N/02/Q27

What is the intensity of a wave of the same frequency that has an amplitude $2a$?

A 4.2 W m^{-2} 6.0 W m^{-2} 9.0 W m^{-2} 12 W m^{-2}

7 Which of the following is true for all transverse waves?

9702/01/M/J/03/Q23

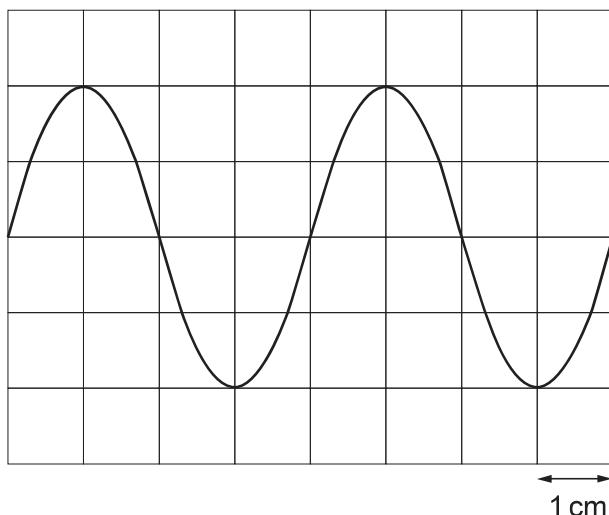
A They are all electromagnetic.

They can all be polarised.

They can all travel through a vacuum.

They all involve the oscillation of atoms.

8 Electromagnetic waves of wavelength λ and frequency f travel at speed c in a vacuum.


Which of the following describes the wavelength and speed of electromagnetic waves of frequency $f/2$?

9702/01/M/J/03/Q25

	wavelength	speed in a vacuum
A	$\lambda/2$	$c/2$
	$\lambda/2$	c
	2λ	c
	2λ	$2c$

9 A sound wave is displayed on the screen of a cathode-ray oscilloscope. The time base of the c.r.o. is set at 2.5 ms/cm.

9702/01/M/J/03/Q26

What is the frequency of the sound wave?

A 50 Hz 100 Hz 200 Hz 400 Hz

10 When the light from two lamps falls on a screen, no interference pattern can be obtained.

9702/01/M/J/03/Q27

Why is this?

A The lamps are not point sources.

The lamps emit light of different amplitudes.

The light from the lamps is not coherent.

The light from the lamps is white.

11 The graph shows how the displacement of a particle in a wave varies with time.

9702/01/O/N/03/Q23

Which of the following is correct?

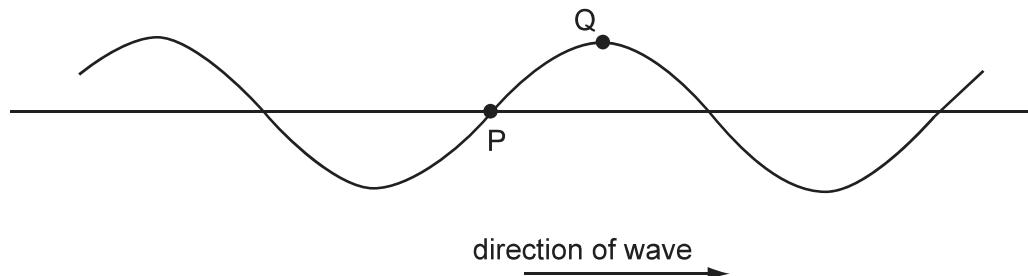
A The wave has an amplitude of 2 cm and could be either transverse or longitudinal.
 The wave has an amplitude of 2 cm and must be transverse.
 The wave has an amplitude of 4 cm and could be either transverse or longitudinal.
 The wave has an amplitude of 4 cm and must be transverse.

12 Which of the following applies to a progressive transverse wave?

9702/01/O/N/03/Q25

	transfers energy	can be polarised
A	no	no
	no	yes
	yes	no
	yes	yes

13 Which observation indicates that sound waves are longitudinal?


9702/01/ /J/04/Q24

A Sound can be reflected from a solid surface.
 Sound cannot be polarised.
 Sound is diffracted around corners.
 Sound is refracted as it passes from hot air to cold air.

14 The diagram shows a transverse wave on a rope. The wave is travelling from left to right.

At the instant shown, the points P and Q on the rope have zero displacement and maximum displacement respectively.

9702/01/ /J/04/Q25

Which of the following describes the direction of motion, if any, of the points P and Q at this instant?

	point P	point Q	
A	downwards	stationary	
	stationary	downwards	
	stationary	upwards	
	upwards	stationary	

15 A plane wave of amplitude A is incident on a surface of area S placed so that it is perpendicular to the direction of travel of the wave. The energy per unit time reaching the surface is E.

The amplitude of the wave is increased to 2A and the area of the surface is reduced to $\frac{1}{2}S$.

How much energy per unit time reaches this smaller surface?

9702/01/ /J/04/Q26

A $4E$ $2E$ E $\frac{1}{2}E$

16 What is the approximate range of frequencies of infra-red radiation?

9702/01/ /J/04/Q27

A 1×10^3 Hz to 1×10^9 Hz
 1×10^9 Hz to 1×10^{11} Hz
 1×10^{11} Hz to 1×10^{14} Hz
 1×10^{14} Hz to 1×10^{17} Hz

17 A wave of amplitude 20 mm has intensity I_X . Another wave of the same frequency but of amplitude 5 mm has intensity I_Y .

9702/01/ /N/04/Q26

What is $\frac{I_X}{I_Y}$?

A 2

4

16

256

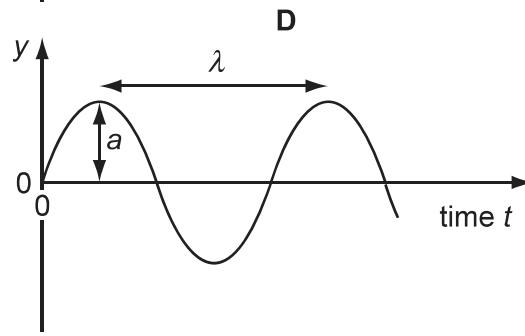
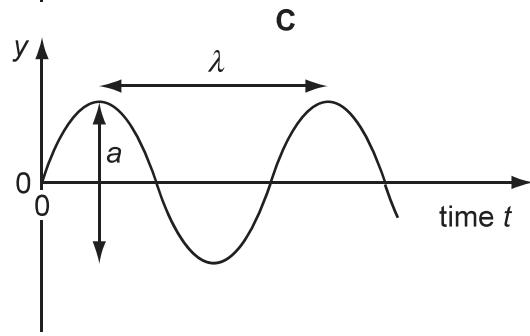
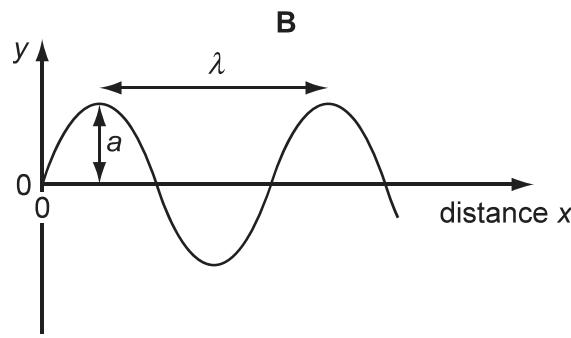
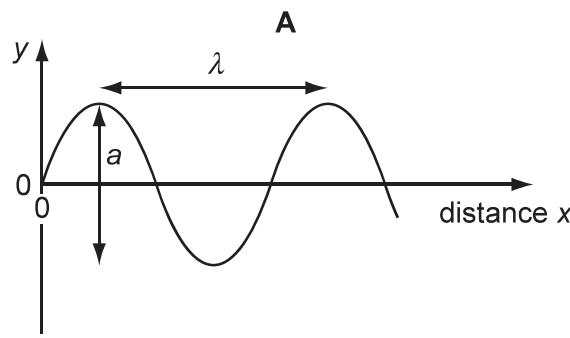
24 Polarisation is a phenomenon associated with a certain type of wave.

9702/01/ /N/0/Q22

Which condition must be fulfilled if a wave is to be polarised?

A It must be a light wave.

It must be a longitudinal wave.





It must be a radio wave.

It must be a transverse wave.

25 A sound wave has displacement y at distance x from its source at time t .

9702/01/ /N/0/Q23

Which graph correctly shows the amplitude a and the wavelength λ of the wave?

26 Which phenomenon is associated with transverse waves but not longitudinal waves?

9702/01/ /J/06/Q23

A polarisation

reflection

refraction

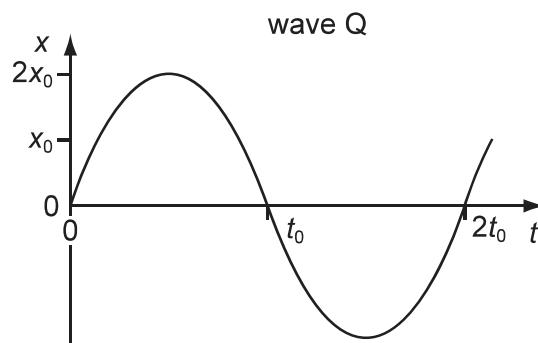
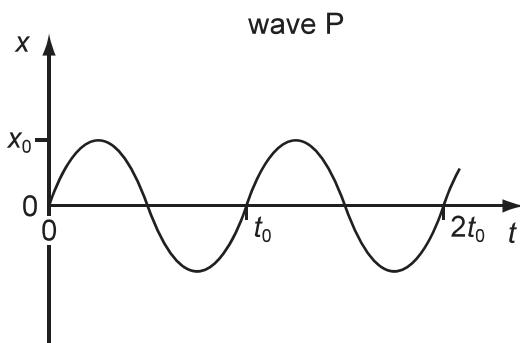
superposition

27 The order of magnitude of the frequency of the longest-wavelength ultraviolet waves can be expressed as 10^x Hz.

9702/11/ /N/09/Q23

What is the value of x ?

A 13



15

17

19

28 The intensity of a progressive wave is proportional to the square of the amplitude of the wave. It is also proportional to the square of the frequency. 9702/01/ /N/05/Q24

The variation with time t of displacement x of particles in a medium, when two progressive waves P and Q pass separately through the medium, are shown on the graphs.

The intensity of wave P is I_0 .

What is the intensity of wave Q?

A

I_0

I_0

I_0

$16I_0$

29 A sound wave of frequency 150 Hz travels in water at a speed of 1500 m s^{-1} . It then travels through the surface of the water and into air, where its speed is 300 m s^{-1} . 9702/01/ /N/05/Q25

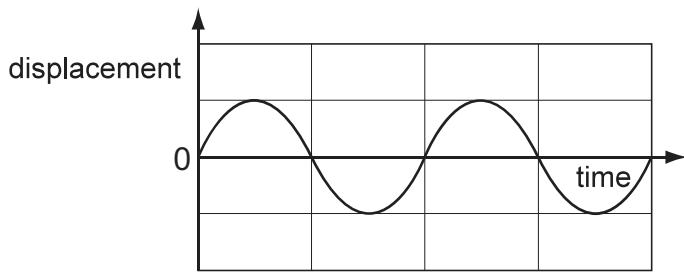
Which line in the table gives the correct values for the wavelengths of the sound in water and in air?

	wavelength in water/m	wavelength in air/m
A	0.10	0.10
	0.10	0.50
	10	2.0
	10	50

30 A wave motion is described by the oscillation of particles. 9702/01/ /N/06/Q24

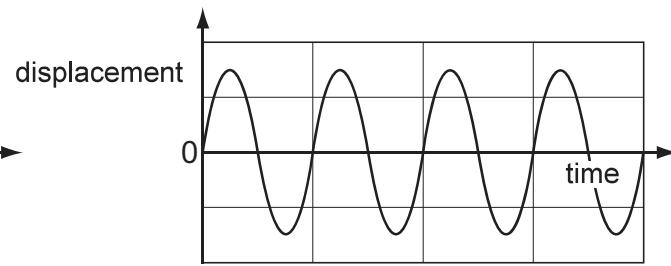
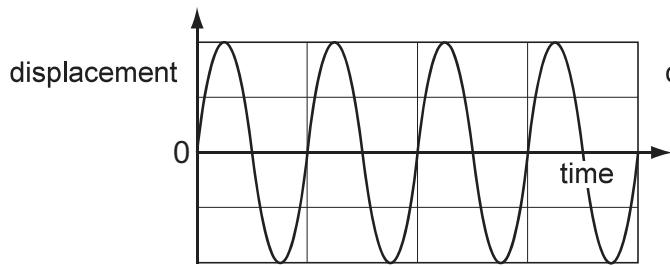
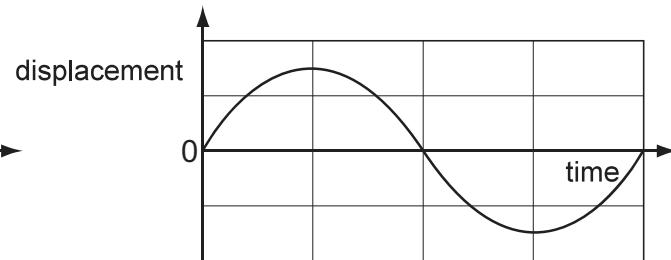
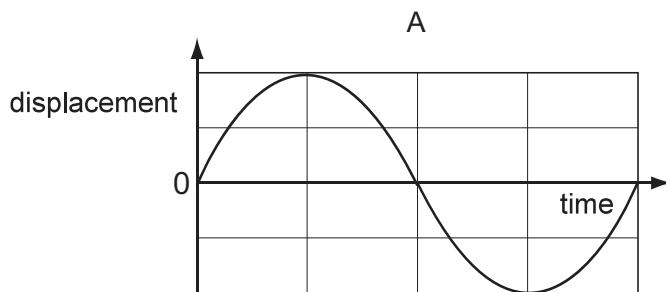
What is the name given to the number of complete oscillations of a particle in one second?

A amplitude

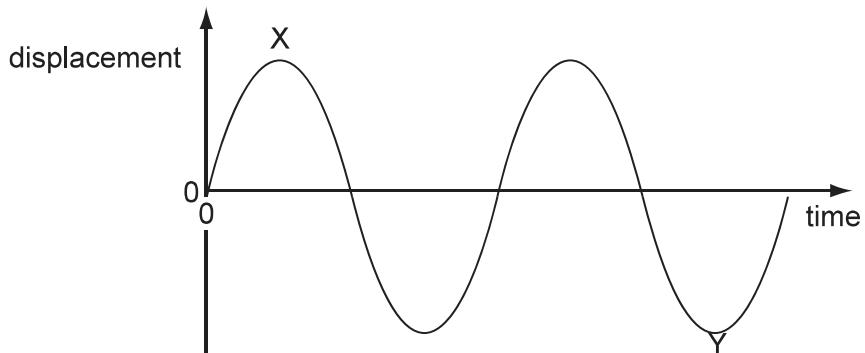

frequency

wavelength

wave speed





31 A displacement-time graph is shown for a particular wave.

9702/01/ /J/06/Q24


A second wave of similar type has twice the intensity and half the frequency.

When drawn on the same axes, what would the second wave look like?

32 A displacement-time graph for a transverse wave is shown in the diagram.

9702/01/ /N/06/Q25

The phase difference between X and Y can be expressed as $n\pi$.

What is the value of n?

A 1.5

2.5

3.0

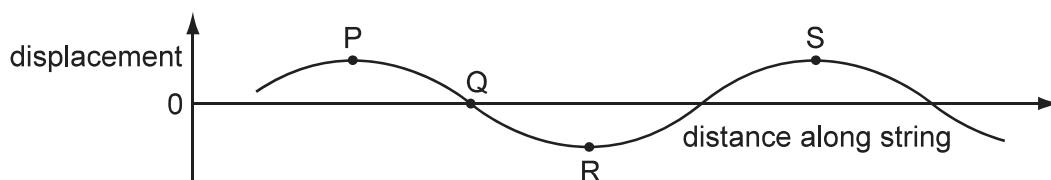
6.0

33 Continuous water waves are diffracted through a gap in a barrier in a ripple tank. 9702/01/ /N/06/Q26

Which change will cause the diffraction of the waves to increase?

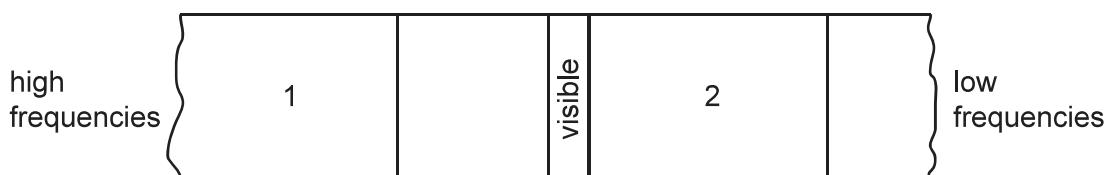
- A increasing the frequency of the waves
- increasing the width of the gap
- reducing the wavelength of the waves
- reducing the width of the gap

34 Which of the following types of wave can be polarised? 9702/01/ /J/07/Q21


- A a longitudinal progressive wave
- a longitudinal stationary wave
- a transverse stationary wave
- a transverse sound wave

35 Sound wave X has intensity 10^{12} times greater than that of sound wave Y. 9702/01/ /J/07/Q22

By how much is the amplitude of X greater than the amplitude of Y?


- A 10^6 times
- 3.16×10^6 times
- 5×10^{11} times
- 10^{12} times

36 The graph shows the shape at a particular instant of part of a transverse wave travelling along a string. 9702/01/ /J/07/Q23

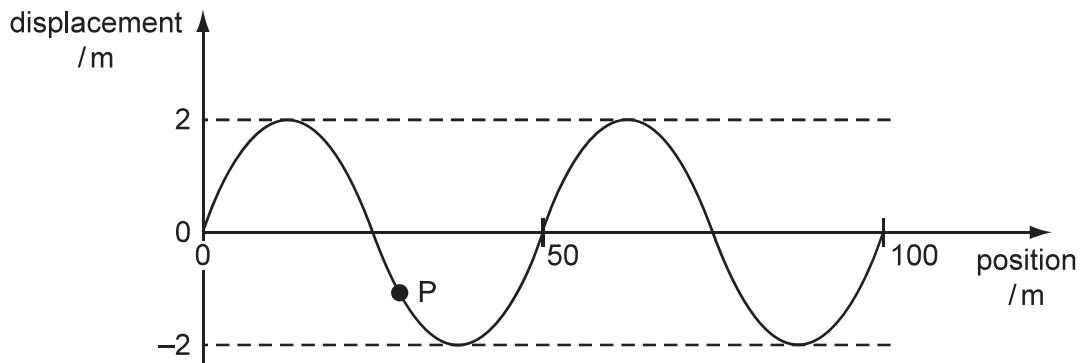
Which statement about the motion of points in the string is correct?

- A The speed at point P is a maximum.
- The displacement at point Q is always zero.
- The energy at point R is entirely kinetic.
- The acceleration at point S is a maximum.

37 The diagram illustrates part of the electromagnetic spectrum.

Which labels are correct for the regions marked 1 and 2?

	1	2
A	infrared microwaves ultraviolet X-rays	X-rays X-rays microwaves infrared


38 What is the relationship between the intensity I and the amplitude a of a wave?

A $\frac{I}{a} = \text{constant}$

$$\frac{I}{a^2} = \text{constant}$$

$$Ia = \text{constant}$$

$$Ia^2 = \text{constant}$$

39 The graph represents a sinusoidal wave in the sea, travelling at a speed of 0.0 m s^{-1} , at one instant of time. The maximum speed of the oscillating particles in the wave is $2\pi af$, where a is the amplitude and f is the frequency.

An object P of mass $2.0 \times 10^{-3} \text{ kg}$ floats on the surface.

What is the maximum kinetic energy of P due to the wave? Assume that its motion is vertical.

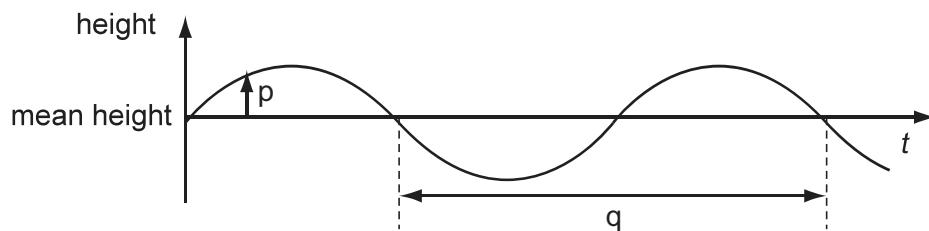
A 0.026 mJ

4.0 mJ

39 mJ

64 mJ

40 An electromagnetic wave has a frequency of 10 Hz.

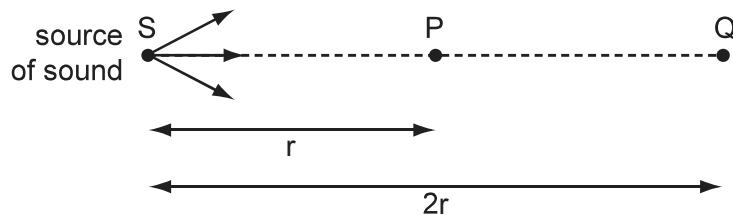

9702/01/ /N/07/Q22

In which region of the electromagnetic spectrum does the wave occur?

A infra-red
radio
ultraviolet
visible

41 The graph shows how the height of a water surface at a point in a harbour varies with time t as waves pass the point.

9702/01/ /J/0 /Q25


What are p and q?

A	p	displacement	q	wavelength		
	displacement	period				
	amplitude	wavelength				
	amplitude	period				

42 The intensity I of a sound at a point P is inversely proportional to the square of the distance x of P from the source of the sound. That is

9702/01/ /J/0 /Q26

$$I \propto \frac{1}{x^2}.$$

Air molecules at P, a distance r from S, oscillate with amplitude 1.0 m.

Point Q is situated a distance $2r$ from S.

What is the amplitude of oscillation of air molecules at Q?

A 1.4 m 2.0 m 2. m 4.0 m

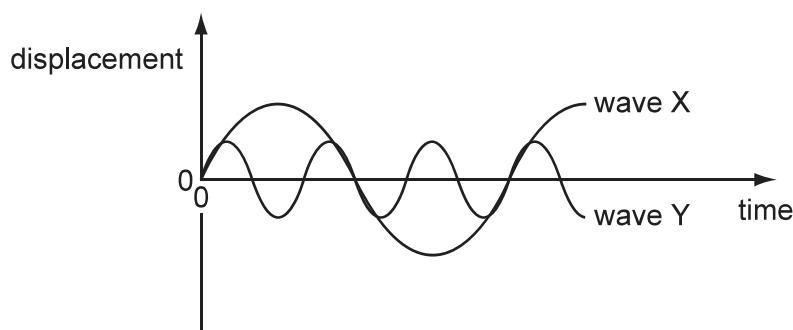
43 Sound waves, emitted by a small loudspeaker, are reflected by a wall.

9702/01/ /J/0 /Q27

The frequency f of the waves is adjusted until a stationary wave is formed with the antinode nearest the wall at a distance x from the wall.

Which expression gives f in terms of x and the speed of sound c ?

A $f = \frac{4c}{x}$


$f = \frac{2c}{x}$

$f = \frac{c}{2x}$

$f = \frac{c}{4x}$

44 The diagram shows two waves X and Y.

9702/01/ /N/0 /Q24

Wave X has amplitude cm and frequency 100 Hz.

What are the amplitude and frequency of wave Y?

	amplitude/cm	frequency/Hz
A	2	33
	2	300
	4	33
	4	300

45 Light can exhibit all of the properties listed.

9702/01/ /N/0 /Q25

Which property can sound not exhibit?

A interference

polarisation

refraction

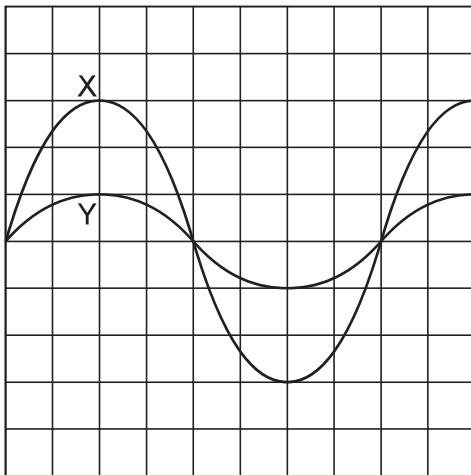
total internal reflection

46 The order of magnitude of the frequency of the longest-wavelength ultraviolet waves can be expressed as 10^x Hz.

9702/12/ /N/09/Q22

What is the value of x ?

A 13


15

17

19

47 The diagram represents the screen of a cathode-ray oscilloscope displaying two sound waves labelled X and Y.

9702/01/ /N/0 /Q26

What is the ratio $\frac{\text{intensity of sound wave X}}{\text{intensity of sound wave Y}}$?

A $\frac{9}{1}$ $\frac{3}{1}$ $\frac{\sqrt{3}}{1}$ $\frac{1}{1}$

48 Which wave properties change when light passes from air into glass?

9702/01/ /J/09/Q23

A colour and speed
 frequency and wavelength
 speed and wavelength
 wavelength and colour

49 The light from two lasers passes through a vacuum. One laser emits red light and the other emits green light.

9702/11/ /N/09/Q24

Which property of the two laser beams must be different?

A amplitude
 frequency
 plane of polarisation
 speed

50 The amplitude of a wave is A and its intensity is I.

9702/12/ /N/10/Q23

Which amplitude is necessary for the intensity to be doubled to $2I$?

A A^2 \sqrt{A} $\sqrt{2}A$ $2A$

51 The light from two lasers passes through a vacuum. One laser emits red light and the other emits green light. 9702/12/ /N/09/Q23

Which property of the two laser beams must be different?

- A amplitude
- frequency
- plane of polarisation
- speed

52 Electromagnetic waves from an unknown source in space were found to be significantly diffracted when passing through gaps of the order of 10^{-5} m. 9702/11/ /J/10/Q22

Which type of wave are they most likely to be?

- A radio waves
- microwaves
- infra-red waves
- ultraviolet waves

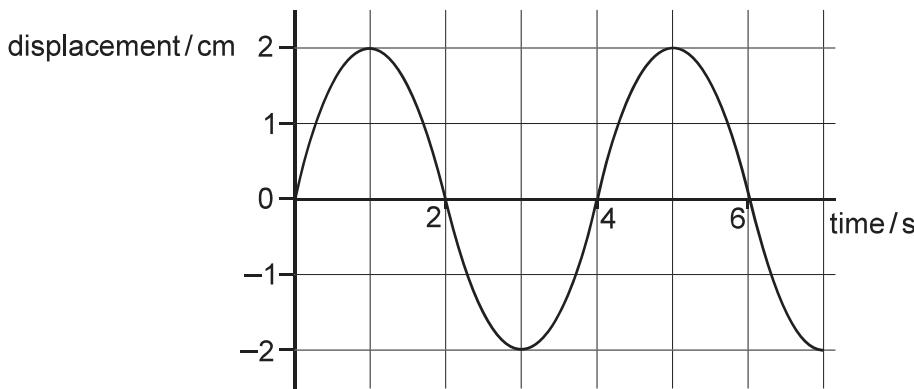
53 Electromagnetic waves from an unknown source in space were found to be significantly diffracted when passing through gaps of the order of 10^{-5} m. 9702/13/ /J/10/Q23

Which type of wave are they most likely to be?

- A radio waves
- microwaves
- infra-red waves
- ultraviolet waves

54 Electromagnetic waves from an unknown source in space were found to be significantly diffracted when passing through gaps of the order of 10^{-5} m. 9702/12/ /J/10/Q24

Which type of wave are they most likely to be?

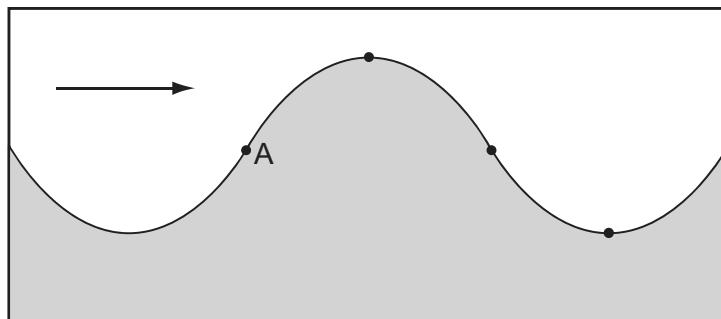

- A radio waves
- microwaves
- infra-red waves
- ultraviolet waves

55 Which value is a possible wavelength for radiation in the ultra-violet region of the electromagnetic spectrum? 9702/12/ /N/10/Q24

- A 3×10^{-2} m
- 3×10^{-5} m
- 3×10^{-10} m
- 3×10^{-10} m

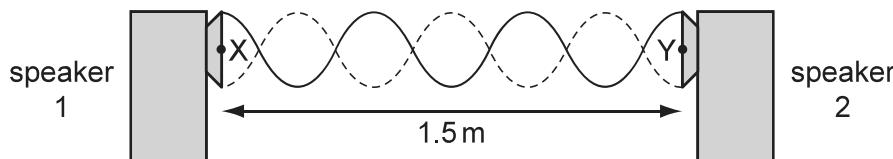
56 The graph shows how the displacement of a particle in a wave varies with time.

9702/11/ /N/10/Q23


Which statement is correct?

A The wave has an amplitude of 2 cm and could be either transverse or longitudinal.
 The wave has an amplitude of 2 cm and must be transverse.
 The wave has an amplitude of 4 cm and could be either transverse or longitudinal.
 The wave has an amplitude of 4 cm and must be transverse.

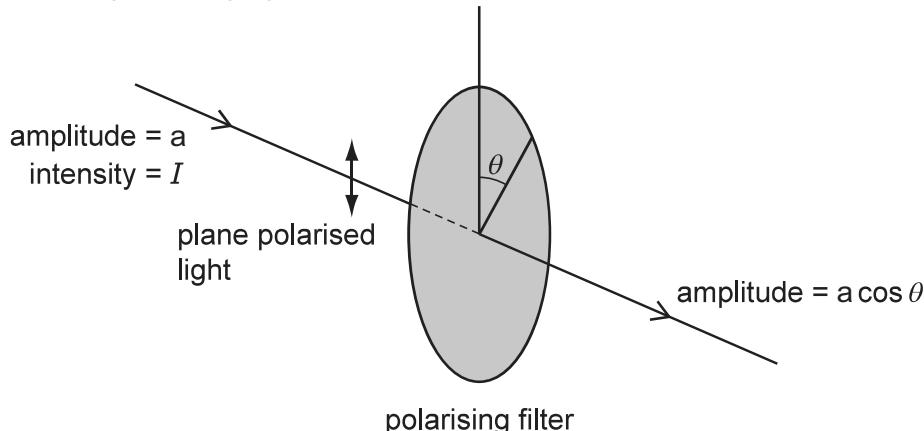
57 The diagram shows a vertical cross-section through a water wave moving from left to right.


9702/11/ /N/10/Q24

At which point is the water moving upwards with maximum speed?

58 A stationary wave is produced by two loudspeakers emitting sound of the same frequency.

9702/11/ /N/10/Q26

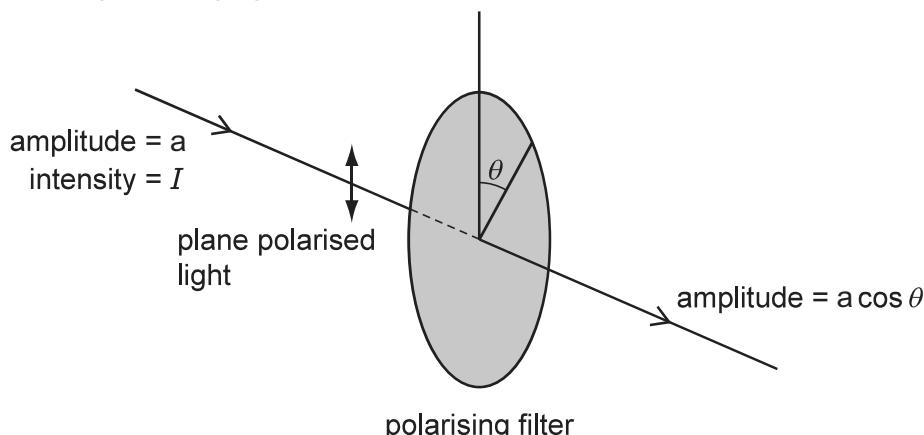


When a microphone is moved between X and Y, a distance of 1.5 m, six nodes and seven antinodes are detected.

What is the wavelength of the sound?

A 0.50 m 0.43 m 0.25 m 0.21 m

59 When plane-polarised light of amplitude a is passed through a polarising filter as shown, the amplitude of the light emerging is $a \cos \theta$. 9702/11/ /N/10/Q25



The intensity of the initial beam is I .

What is the intensity of the emerging light when θ is 60.0 ?

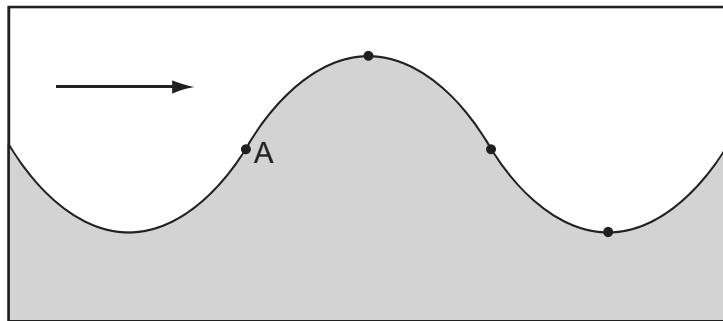
A 0.250I 0.500I 0.750I 0. 66I

60 When plane-polarised light of amplitude a is passed through a polarising filter as shown, the amplitude of the light emerging is $a \cos \theta$. 9702/13/ /N/10/Q24

The intensity of the initial beam is I .

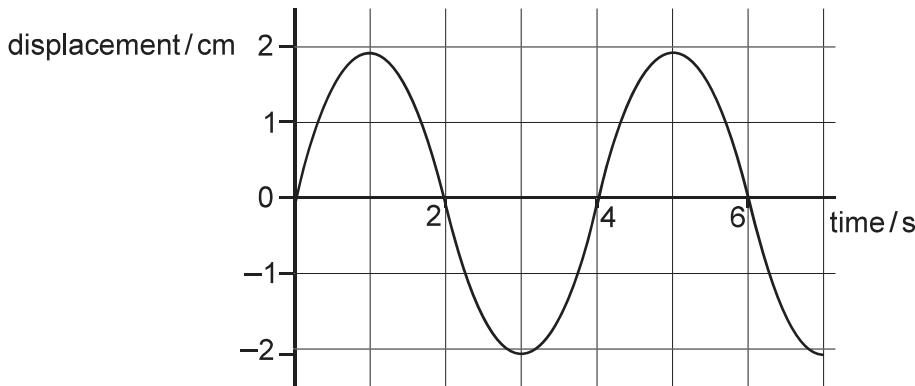
What is the intensity of the emerging light when θ is 60.0 ?

A 0.250I 0.500I 0.750I 0. 66I


61 Which electromagnetic wave would cause the most significant diffraction effect for an atomic lattice of spacing around 10^{-10} m? 9702/13/ /N/10/Q26

A infra-red
microwave
ultraviolet
X-ray

62 The diagram shows a vertical cross-section through a water wave moving from left to right.


9702/13/ /N/10/Q25

At which point is the water moving upwards with maximum speed?

63 The graph shows how the displacement of a particle in a wave varies with time.

9702/13/ /N/10/Q27

Which statement is correct?

A The wave has an amplitude of 2 cm and could be either transverse or longitudinal.

The wave has an amplitude of 2 cm and must be transverse.

The wave has an amplitude of 4 cm and could be either transverse or longitudinal.

The wave has an amplitude of 4 cm and must be transverse.

64 Which statement about sound waves in air at constant temperature is correct?

9702/11/ /J/11/Q23

A Amplitude is inversely proportional to velocity.

Frequency is inversely proportional to wavelength.

Velocity is proportional to wavelength.

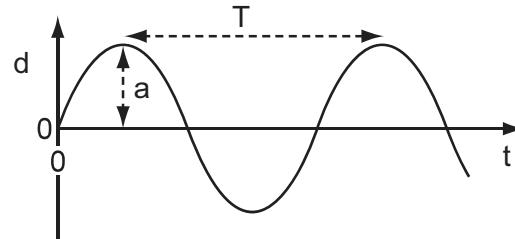
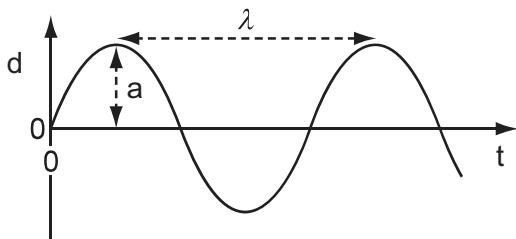
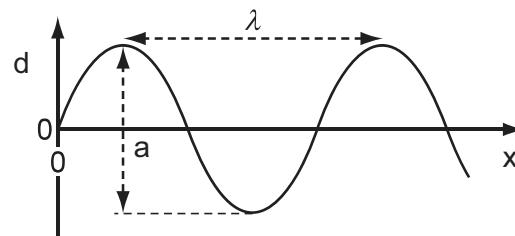
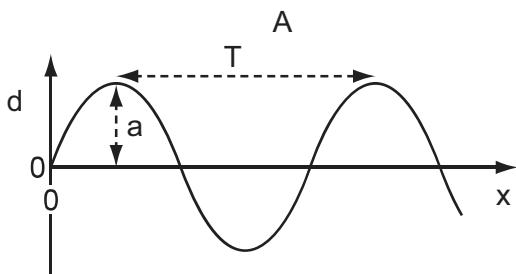
Wavelength is proportional to amplitude.

65 In which order of magnitude are the frequencies of electromagnetic waves in the visible spectrum?

9702/12/ /J/11/Q25

A 10^{12} Hz

10^{13} Hz





10^{14} Hz

10^{15} Hz

66 The four graphs represent a progressive wave on a stretched string. Graphs A and B show how the displacement d varies with distance x along the string at one instant. Graphs C and D show how the displacement d varies with time t at a particular value of x . 9702/11/ /J/11/Q22

The labels on the graphs are intended to show the wavelength λ , the period T and the amplitude a of the wave, but only one graph is correctly labelled.

Which graph is correctly labelled?

67 A source of sound of constant power P is situated in an open space. The intensity I of sound at distance r from this source is given by 9702/11/ /J/11/Q24

$$I = \frac{P}{4\pi r^2}.$$

How does the amplitude a of the vibrating air molecules vary with the distance r from the source?

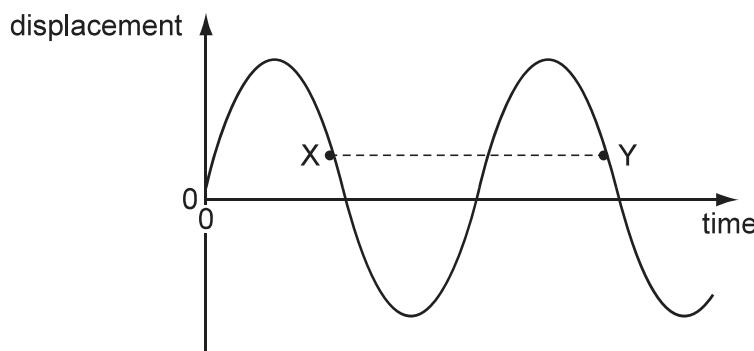
A $a \propto \frac{1}{r}$

$a \propto \frac{1}{r^2}$

$a \propto r$

$a \propto r^2$

68 P is a source emitting infra-red radiation and Q is a source emitting ultra-violet radiation. The figures in the table are suggested values for the wavelengths emitted by P and Q. 9702/11/ /N/11/Q27


Which row is correct?

	wavelength emitted by P/m	wavelength emitted by Q/m
A	5×10^{-5}	5×10^{-10}
	5×10^{-5}	5×10^{-10}
	5×10^{-7}	5×10^{-10}
	5×10^{-7}	5×10^{-10}

69 A transverse progressive wave is set up on a string.

9702/12/ /J/11/Q26

The graph shows the variation with time of displacement for a point on this string.

The separation XY on the graph represents the 1 of the wave.

X and Y have equal 2.

Which words correctly complete gaps 1 and 2?

	1	2	
A	time period	amplitudes	
	time period	displacements	
	wavelength	amplitudes	
	wavelength	displacements	

70 If a wave can be polarised, it must be

9702/12/ /J/11/Q27

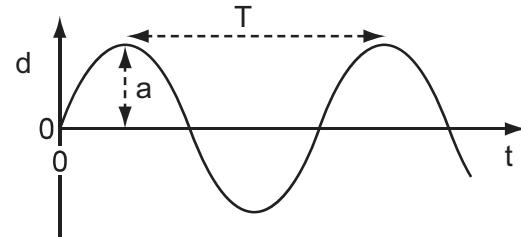
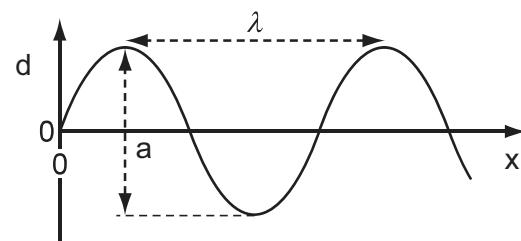
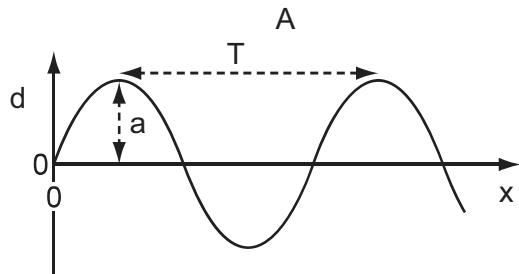
A a longitudinal wave.
an electromagnetic wave.
a sound wave.
a transverse wave.

71 A source of sound of constant power P is situated in an open space. The intensity I of sound at distance r from this source is given by

9702/13/ /J/11/Q22

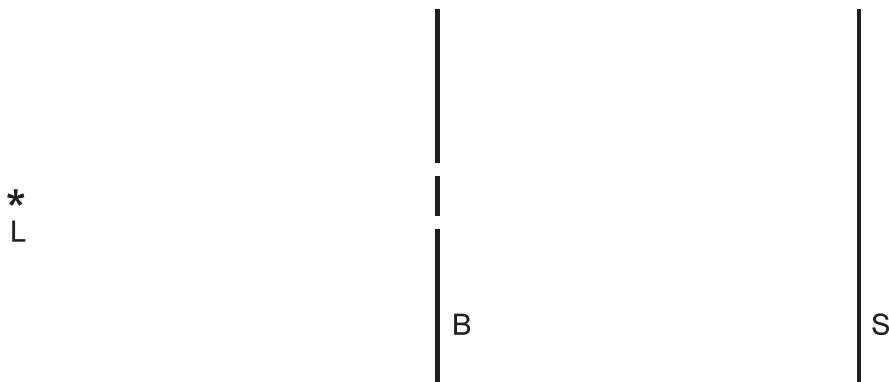
$$I = \frac{P}{4\pi r^2}.$$

How does the amplitude a of the vibrating air molecules vary with the distance r from the source?




A $a \propto \frac{1}{r}$ $a \propto \frac{1}{r^2}$ $a \propto r$ $a \propto r^2$

72 The four graphs represent a progressive wave on a stretched string. Graphs A and C show how the displacement d varies with distance x along the string at one instant. Graphs B and D show how the displacement d varies with time t at a particular value of x .

The labels on the graphs are intended to show the wavelength λ , the period T and the amplitude a of the wave, but only one graph is correctly labelled.


9702/13/ /J/11/Q23

Which graph is correctly labelled?

73 The diagram shows a view from above of a double slit interference demonstration. 9702/11/ /N/11/Q28

L is a monochromatic light source with a vertical filament. B is a barrier with two narrow vertical slits and S is a screen upon which interference fringes form.

The intensity is I at a point on the screen where the centre of the fringe pattern forms.

What is the intensity, at the same point, when one of the slits is covered up?

A $\frac{I}{\sqrt{2}}$

$\frac{I}{2}$

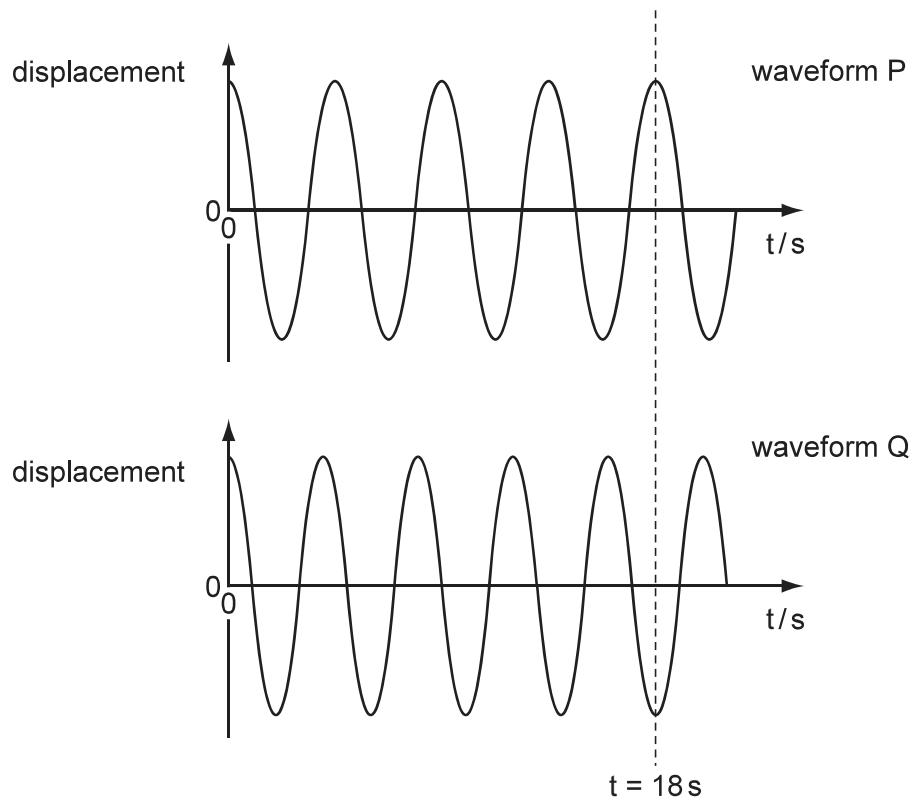
$\frac{I}{2\sqrt{2}}$

$\frac{I}{4}$

74 A wave that can be polarised must be

9702/12/ /N/11/Q24

- A longitudinal.
- progressive.
- stationary.
- transverse.

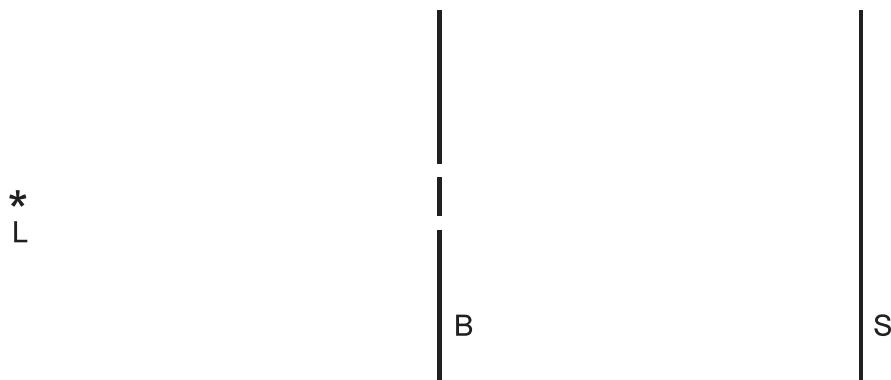

75 Which statement about electromagnetic radiation is correct?

9702/12/ /N/11/Q25

- A Waves of wavelength 5×10^{-9} m are high-energy gamma rays.
- Waves of wavelength 3×10^{-8} m are ultra-violet waves.
- Waves of wavelength 5×10^{-7} m are infra-red waves.
- Waves of wavelength 9×10^{-7} m are light waves.

76 The diagram shows two sinusoidal waveforms.

9702/12/ /N/11/Q26


At time $t = 0$ the waves are in phase. At the dotted line, $t = 1.0\text{ s}$.

At which time is the phase difference between the two oscillations $\frac{1}{8}$ of a cycle?

- A 4.0 s
- 4.5 s
- .0 s
- 9.0 s

77 The diagram shows a view from above of a double slit interference demonstration. 9702/13/ /N/11/Q27

is a monochromatic light source with a vertical filament. is a barrier with two narrow vertical slits and S is a screen upon which interference fringes form.

The intensity is I at a point on the screen where the centre of the fringe pattern forms.

What is the intensity, at the same point, when one of the slits is covered up?

A $\frac{I}{\sqrt{2}}$

$\frac{I}{2}$

$\frac{I}{2\sqrt{2}}$

$\frac{I}{4}$

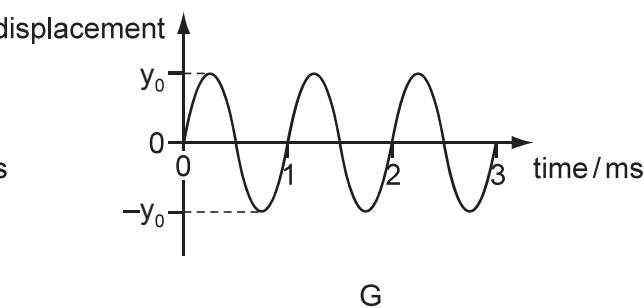
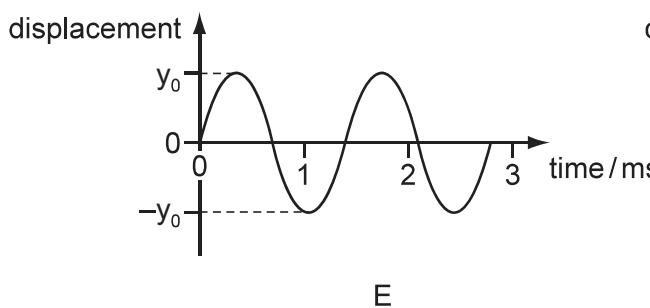
78 P is a source emitting infra-red radiation and Q is a source emitting ultra-violet radiation. The figures in the table are suggested values for the wavelengths emitted by P and Q. 9702/13/ /N/11/Q28

Which row is correct?

A	wavelength emitted by P/m	wavelength emitted by Q/m
	5×10^{-5}	5×10^{-10}
A	5×10^{-5}	5×10^{-10}
	5×10^{-7}	5×10^{-10}
	5×10^{-7}	5×10^{-10}

79 Which observation indicates that sound waves are longitudinal? 9702/11/ /J/12/Q28

A Sound can be reflected from a solid surface.



Sound cannot be polarised.

Sound is diffracted around corners.

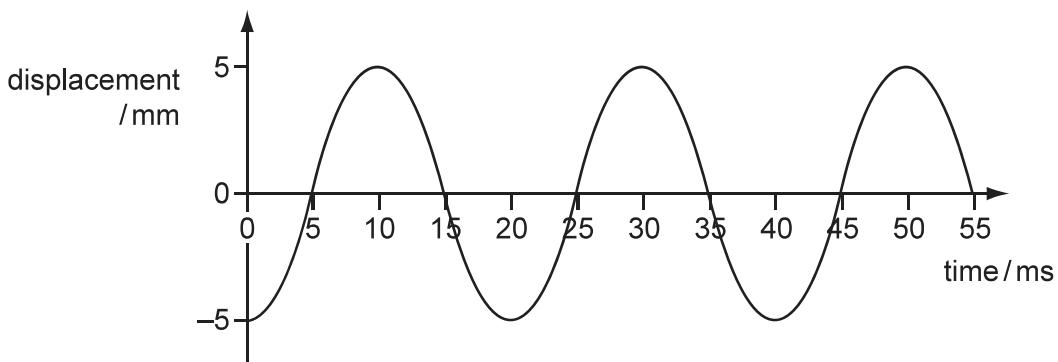
Sound is refracted as it passes from hot air to cold air.

80 Two waves E and G are shown. The waves have the same speed.

9702/11/ /J/12/Q26

Which statement is correct?

A Wave E has a greater amplitude than wave G.


Wave E has a greater intensity than wave G.

Wave E has a smaller frequency than wave G.

Wave E has a smaller wavelength than wave G.

81 The diagram shows a displacement-time graph for a progressive wave.

9702/11/ /J/12/Q27

What are the amplitude and frequency of the wave?

A	amplitude / mm	frequency / Hz
	5	40
	5	50
	10	40
	10	50

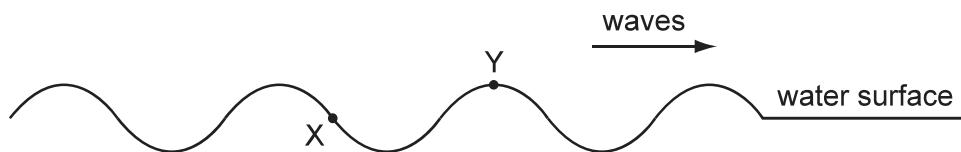
82 A surveyor's device emits a laser pulse.

9702/12/ /J/12/Q26

What is the time taken for the pulse to travel from the device to a wall 150 m away, where it is reflected, and then return to the device?

A 0.05 ns 0.10 ns 0.50 s 1.0 s

83 The period of an electromagnetic wave is 1.0 ns.


9702/12/ /J/12/Q27

What are the frequency and wavelength of the wave?

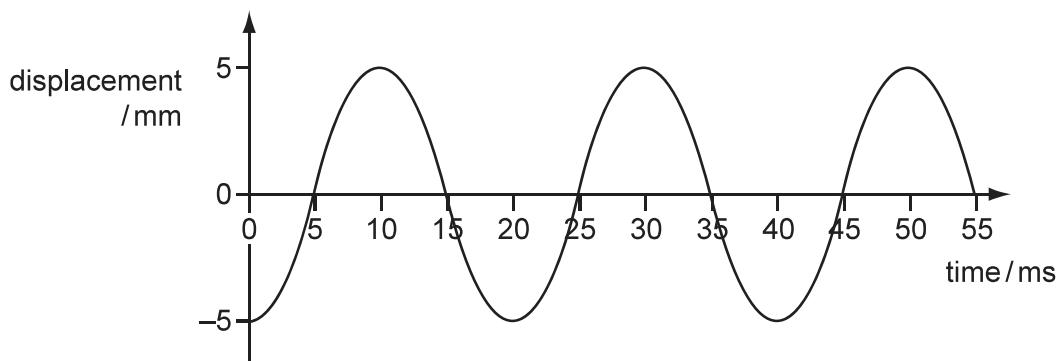
A	frequency / Hz	wavelength / m
	1.0	3.0×10^{-10}
	1.0×10^6	300
	1.0×10^9	0.30
	1.0×10^{12}	3.0×10^{-4}

84 X and Y are two points on the surface of water in a ripple tank. A source of waves of constant frequency begins to generate waves which then travel past X and Y, causing them to oscillate.

9702/12/ /J/12/Q28

What is the phase difference between X and Y?

A 45

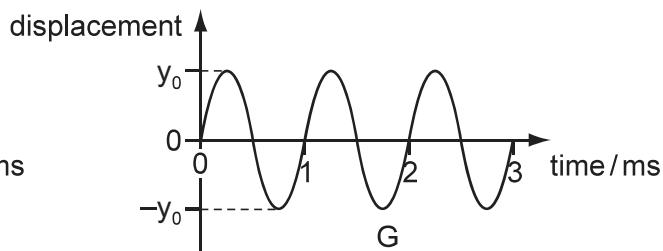
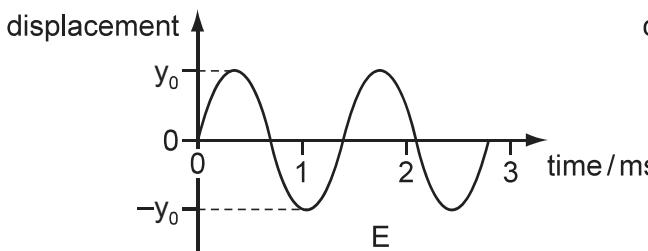

135

10

270

85 The diagram shows a displacement-time graph for a progressive wave.

9702/13/ /J/12/Q26

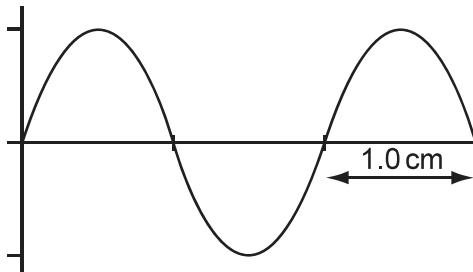
What are the amplitude and frequency of the wave?

A	amplitude / mm	frequency / Hz
	5	40
	5	50
	10	40
	10	50

86 Two waves E and G are shown. The waves have the same speed.

9702/13/ /J/12/Q27

Which statement is correct?

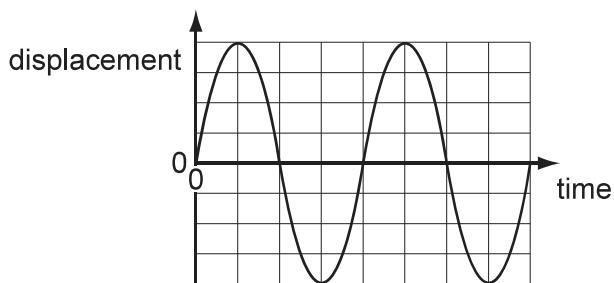

- A Wave E has a greater amplitude than wave G.
- Wave E has a greater intensity than wave G.
- Wave E has a smaller frequency than wave G.
- Wave E has a smaller wavelength than wave G.

87 Which observation indicates that sound waves are longitudinal?

9702/13/ /J/12/Q29

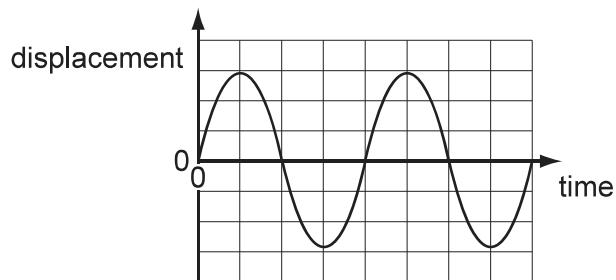
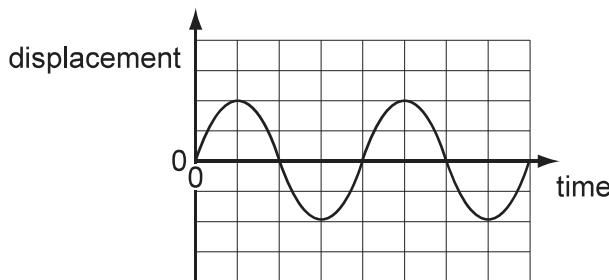
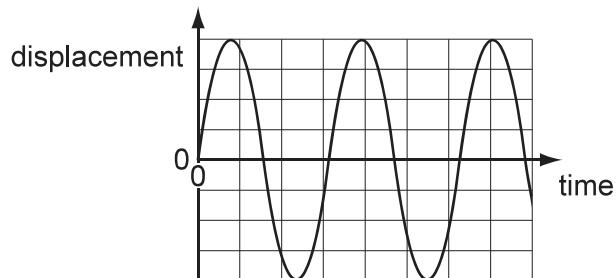
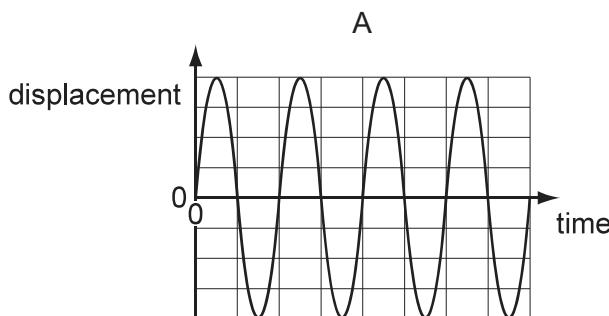
- A Sound can be reflected from a solid surface.
- Sound cannot be polarised.
- Sound is diffracted around corners.
- Sound is refracted as it passes from hot air to cold air.

88 The diagram shows a cathode-ray oscilloscope display of an electromagnetic wave. 9702/12/ /N/12/Q31


The time base setting is 0.20 s cm^{-1} .

Which statement is correct?

- A The frequency of the wave is 2.5 Hz and it lies in the radio wave region of the electromagnetic spectrum.
- The frequency of the wave is 2.5 Hz and it lies in the microwave region of the electromagnetic spectrum.
- The frequency of the wave is 5.0 Hz and it lies in the radio wave region of the electromagnetic spectrum.
- The frequency of the wave is 5.0 Hz and it lies in the microwave region of the electromagnetic spectrum.





89 The diagram shows a graph of displacement against time for a sound wave.

9702/11/ /N/12/Q26

The intensity of the sound is halved.

Which graph shows the displacement of this sound wave?

90 What do not travel at the speed of light in a vacuum?

9702/11/ /N/12/Q27

A electrons
microwaves
radio waves
X-rays

91 A health inspector is measuring the intensity of a sound. Near a loudspeaker, his meter records an intensity I . This corresponds to an amplitude A of the sound wave. At another position, the meter gives an intensity reading of $2I$.

9702/13/ /N/12/Q29

What is the corresponding amplitude of the sound wave?

A $\frac{A}{\sqrt{2}}$ $\sqrt{2}A$ $2A$ $4A$

92 diffraction can be observed when a wave passes an obstruction. The diffraction effect is greatest when the wavelength and the obstruction are similar in size. 9702/13/ /N/12/Q28

For waves travelling through air, what is the combination of wave and obstruction that could best demonstrate diffraction?

- A microwaves passing a steel post
- radio waves passing a copper wire
- sound waves passing a human hair
- visible light waves passing a gate post

93 A wave has a speed of 340 ms^{-1} and a period of 0.2 ms . 9702/11/ /J/13/Q25

What is its wavelength?

- A 0.095 m
- 95 m
- $1.2 \times 10^3 \text{ m}$
- $1.2 \times 10^6 \text{ m}$

94 Which line in the table summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum? 9702/11/ /J/13/Q26

	frequency	speed in a vacuum	
A	decreases	decreases	
	decreases	remains constant	
	increases	remains constant	
	increases	increases	

95 A light wave of amplitude A is incident normally on a surface of area S. The power per unit area reaching the surface is P. 9702/11/ /J/13/Q24

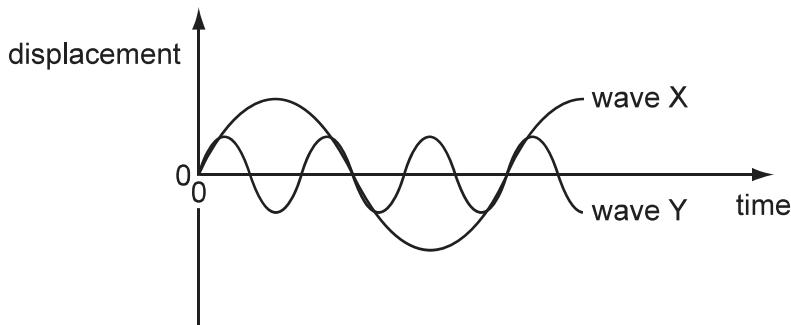
The amplitude of the light wave is increased to $2A$. The light is then focussed on to a smaller area $\frac{1}{3}S$.

What is the power per unit area on this smaller area?

- A $36P$
- $1P$
- $12P$
- $6P$

96 The order of magnitude of the frequency of the shortest wavelength of visible light waves can be expressed as 10^x Hz. 9702/12/ /J/13/Q24

What is the value of x?


A 12

13

14

15

97 The diagram shows two waves X and Y. 9702/12/ /J/13/Q25

Wave X has amplitude cm and frequency 100 Hz.

What are the amplitude and the frequency of wave Y?

	amplitude/cm	frequency/Hz
A	2	33
	2	300
	4	33
	4	300

98 What is correct for all transverse waves? 9702/12/ /J/13/Q26

A They are all electromagnetic.

They can all be polarised.

They can all travel through a vacuum.

They all involve the oscillation of atoms.

99 Which statement about different types of electromagnetic wave is correct? 9702/13/ /J/13/Q22

A The frequency of infra-red waves is less than the frequency of blue light.

The frequency of radio waves is greater than the frequency of gamma rays.

The wavelength of red light is less than the wavelength of ultraviolet waves.

The wavelength of X-rays is greater than the wavelength of microwaves.

100 Electromagnetic waves of wavelength λ and frequency f travel at speed c in a vacuum.

What describes the wavelength and speed of electromagnetic waves of frequency $f/2$?

9702/13/ /J/13/Q24

	wavelength	speed in a vacuum
A	$\lambda/2$	$c/2$
	$\lambda/2$	c
	2λ	c
	2λ	$2c$

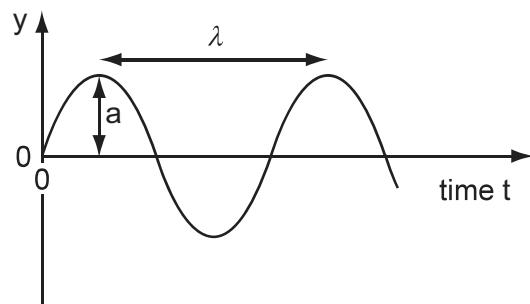
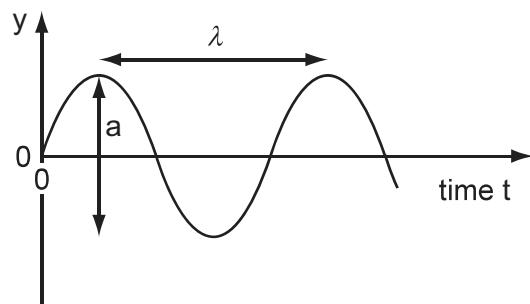
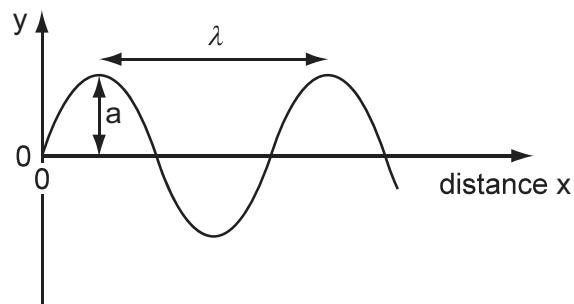
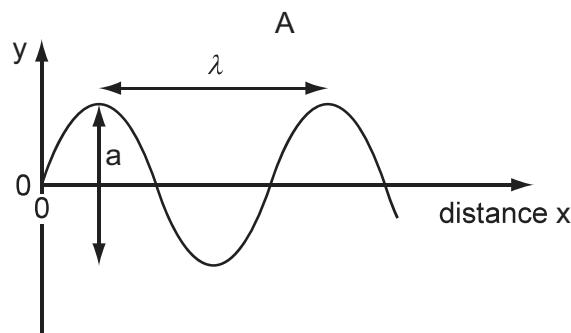
101 range light has a wavelength of 600 nm.

9702/13/ /J/13/Q23

What is the frequency of this light?

A 1 0 Hz

1 0 Hz





500 THz

500 kHz

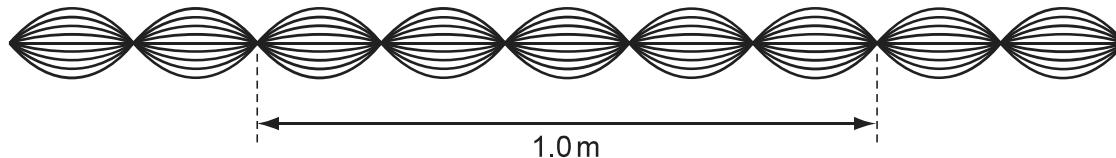
102 A sound wave has displacement y at distance x from its source at time t .

9702/13/ /J/13/Q26

Which graph correctly shows the amplitude a and the wavelength λ of the wave?

103 When the liquid crystal display of a calculator is observed through a polarising film, the display changes as the film is rotated. 9702/13/ /J/13/Q25

Which property describes the radiation from the calculator display?


- A unpolarised
- a longitudinal wave
- a transverse wave
- a wave with a 3 cm wavelength

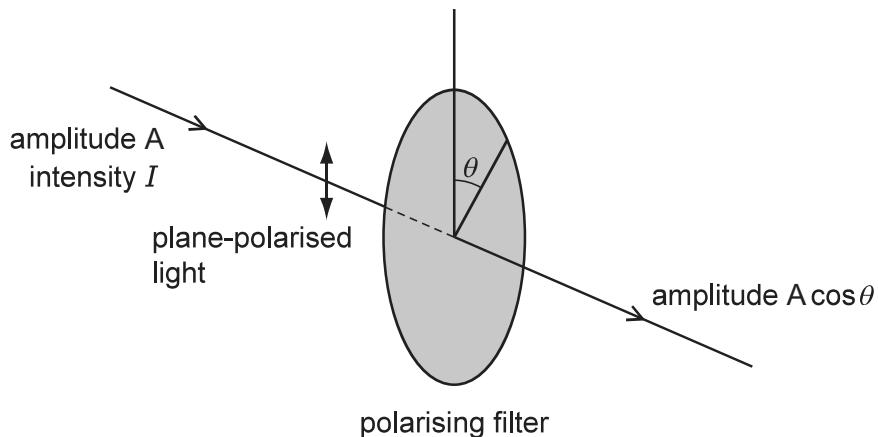
104 A wave has a frequency of 5 Hz. 9702/11/ /J/13/Q4

What is the period of the wave?

- A 20000 s
- 20 ns
- 2 ns
- 200 ps

105 The diagram shows a sketch of a wave pattern, over a short period of time. 9702/11/ /N/13/Q25

Which description of this wave is correct?


- A The wave is longitudinal, has a wavelength of 20 cm and is stationary.
- The wave is transverse, has a wavelength of 20 cm and is stationary.
- The wave is transverse, has a wavelength of 40 cm and is progressive.
- The wave is transverse, has a wavelength of 40 cm and is stationary.

106 Which statement about a light wave and a sound wave is correct? 9702/11/ /N/13/Q26

- A oth can be polarised.
- oth can travel through free space.
- oth have a frequency inversely proportional to their wavelength.
- oth have an intensity proportional to their amplitude.

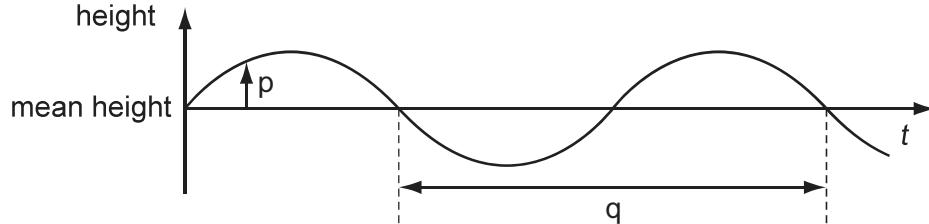
107 When plane-polarised light of amplitude A is passed through a polarising filter as shown, the amplitude of the light emerging is $A \cos \theta$.

9702/11/ /N/13/Q30

The intensity of the initial beam is I .

What is the intensity of the emerging light when θ is 60.0° ?

A 0.250I


0.500I

0.750I

0.66I

108 The graph shows how the height of the water surface at a point in a harbour varies with time t as waves pass the point.

9702/13/ /N/13/Q25

What are p and q ?

A	p	q	
	displacement	period	
	displacement	wavelength	
	amplitude	period	
	amplitude	wavelength	

109 Electromagnetic waves from an unknown source in space were found to be significantly diffracted when passing through gaps of the order of 10^{-5} m.

9702/13/ /N/13/Q24

Which type of wave are they most likely to be?

A radio waves
microwaves
infra-red waves
ultraviolet waves

110 A cathode-ray oscilloscope (c.r.o.) displays a waveform corresponding to a sound wave.

In order to determine the frequency of the sound wave, which part of the displayed waveform must be measured and which c.r.o. setting must be known?

9702/13/ /J/14/Q25

	on-screen measurement	c.r.o. setting	
A	amplitude	time-base	
	amplitude	Y-gain	
	wavelength	time-base	
	wavelength	Y-gain	

111 Which statement about longitudinal waves is correct?

9702/11/ /J/14/Q22

A longitudinal waves include radio waves travelling through air.

Particles in a longitudinal wave vibrate at right-angles to the direction of transfer of wave energy.

Some types of longitudinal wave can be polarised.

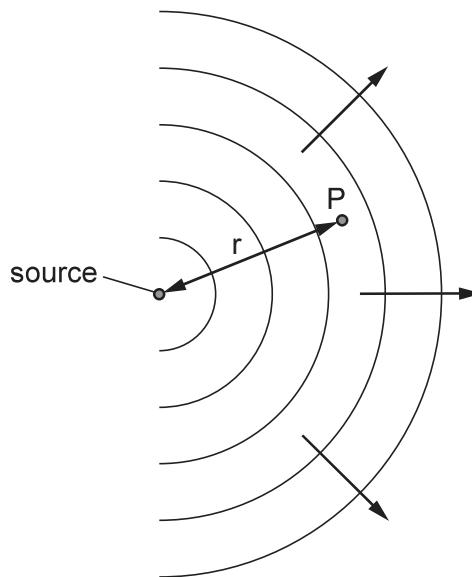
Stationary waves can be produced by the superposition of longitudinal waves.

112 The order of magnitude of the frequency of the longest-wavelength ultraviolet waves can be expressed as 10^x Hz.

9702/11/ /J/14/Q23

What is the value of x?

A 13 15 17 19


113 What is the approximate range of frequencies of infra-red radiation?

9702/13/ /J/14/Q26

A 1×10^3 Hz to 1×10^9 Hz
 1 10^9 Hz to 1×10^{11} Hz
 1 10^{11} Hz to 1×10^{14} Hz
 1 10^{14} Hz to 1×10^{17} Hz

114 A small source emits spherical waves.

9702/13/ /J/14/Q27

The wave intensity I at any point P , a distance r from the source, is inversely proportional to r^2 .

What is the relationship between the wave amplitude a and the distance r ?

A $a^2 \propto \frac{1}{r}$ $a \propto \frac{1}{r}$ $a \propto \frac{1}{r^2}$ $a \propto \frac{1}{r^4}$

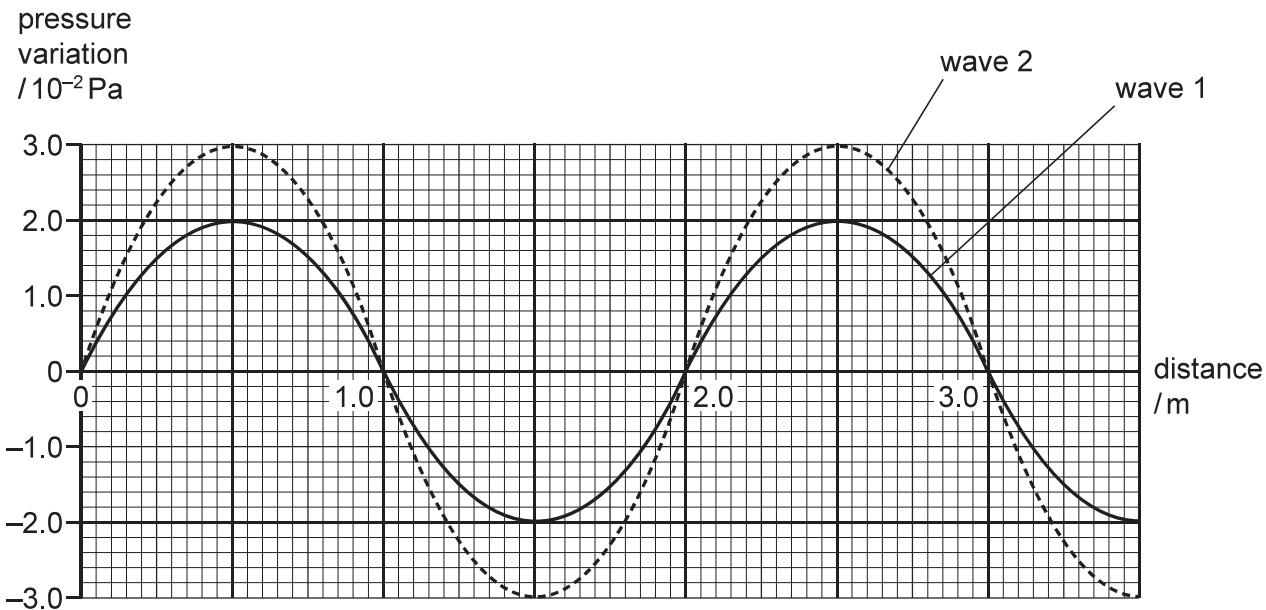
115 The speed v of waves in deep water is given by the equation

$$v^2 = \frac{g\lambda}{2\pi}$$

9702/11/ /J/14/Q24

where λ is the wavelength of the waves and g is the acceleration of free fall.

A student measures the wavelength λ and the frequency f of a number of these waves.


Which graph should he plot to give a straight line through the origin?

A f^2 against λ
 f against λ^2
 f against $\frac{1}{\lambda}$
 f^2 against $\frac{1}{\lambda}$

116 A sound wave consists of a series of moving pressure variations from the normal, constant air pressure.

9702/12/ /J/14/Q23

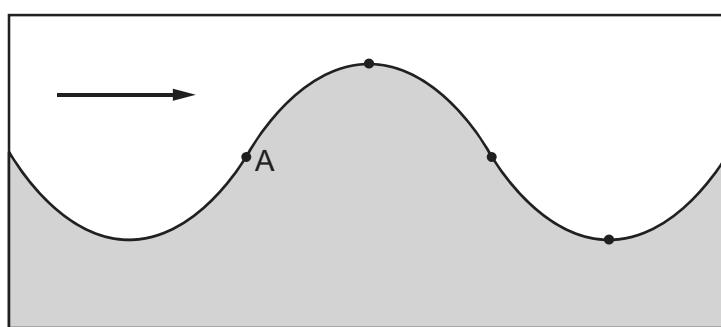
The graph shows these pressure variations for two waves at one instant in time.

Wave 1 has an intensity of $1.6 \times 10^6 \text{ W m}^{-2}$.

What is the intensity of wave 2?

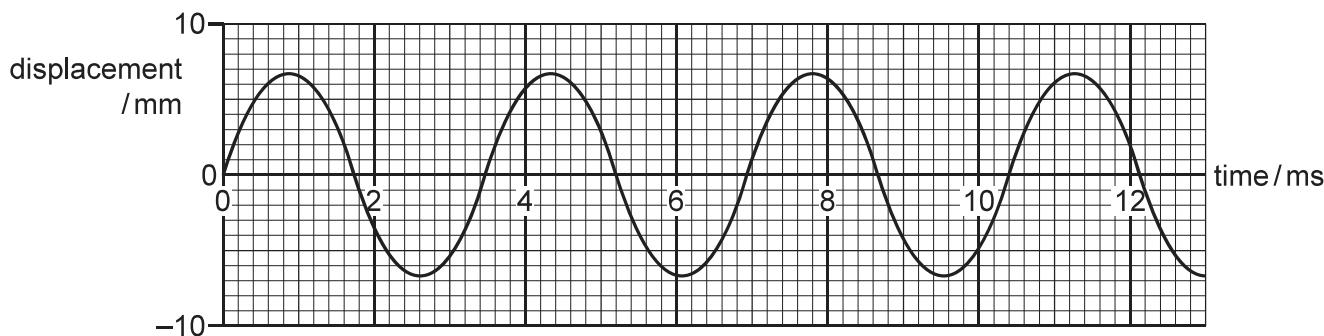
A $2.4 \times 10^6 \text{ W m}^{-2}$

$3.0 \times 10^6 \text{ W m}^{-2}$


$3.6 \times 10^6 \text{ W m}^{-2}$

$4.5 \times 10^6 \text{ W m}^{-2}$

117 The diagram shows a vertical cross-section through a water wave moving from left to right.


At which point is the water moving upwards with maximum speed?

9702/12/ /J/14/Q24

118 What, to two significant figures, are the period, the frequency and the amplitude of the wave represented by the graph?

9702/12/ /J/14/Q22

	period /s	frequency /Hz	amplitude /m
A	0.0027	370	0.0067
	0.0031	320	0.013
	0.0035	290	0.0067
	0.0042	240	0.013

119 Which statement about waves is correct?

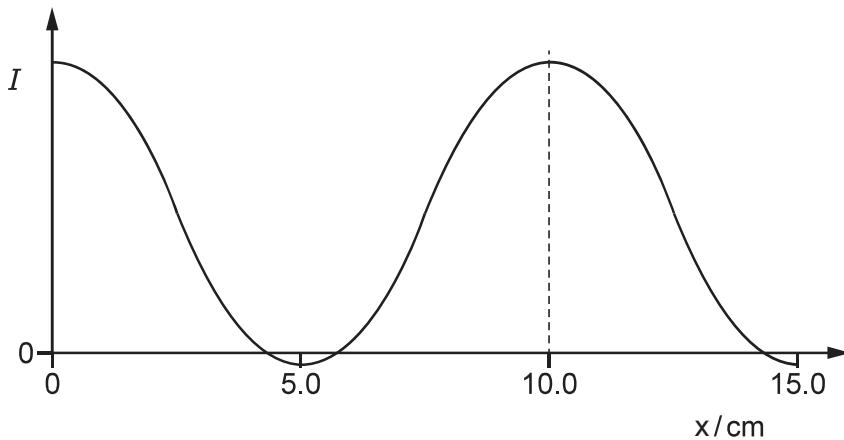
9702/13/ /N/14/Q26

A All electromagnetic waves travel at the same speed in a vacuum.
 Longitudinal waves can be polarised.
 The amplitude of a wave is directly proportional to the energy transferred by the wave.
 The frequency of infra-red light is greater than the frequency of ultra-violet light.

120 Which statement describes a situation when polarisation could not occur?

9702/11/ /N/14/Q24

A Light waves are reflected.
 Light waves are scattered.
 Microwaves pass through a metal grid.
 Sound waves pass through a metal grid.


121 A stationary sound wave is produced in a tube.

9702/11/ /N/14/Q25

Which statement describes the wave speed?
 A It is the distance between two adjacent nodes divided by the period of the wave.
 It is the speed at which energy is transferred from one antinode to an adjacent antinode.
 It is the speed of a particle at an antinode.
 It is the speed of one of the progressive waves that are producing the stationary wave.

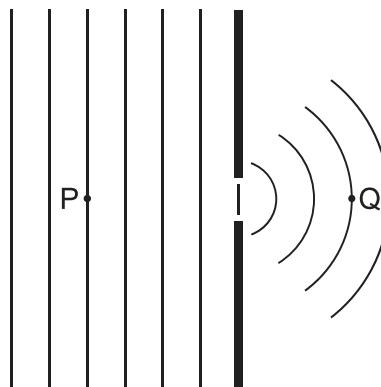
122 The variation with distance x of the intensity I along a stationary sound wave in air is shown by the following graph.

9702/13/ /N/14/Q27

The speed of sound in air is 340 ms^{-1} .

What is the frequency of the sound wave?

A 1700 Hz


2270 Hz

3400 Hz

6 00 Hz

123 Plane wavefronts in a ripple tank pass through a gap as shown.

9702/13/ /N/14/Q28

Which property of the wave will be different at Q compared with P?

A velocity

frequency

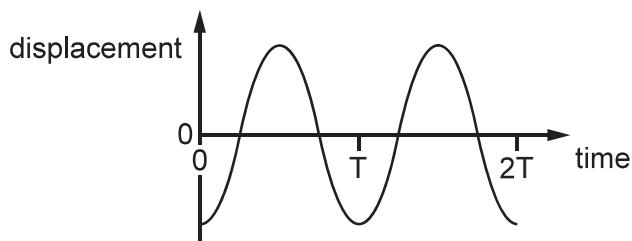
amplitude

wavelength

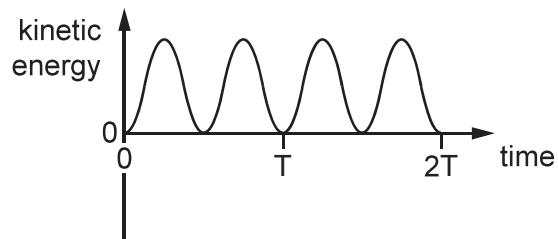
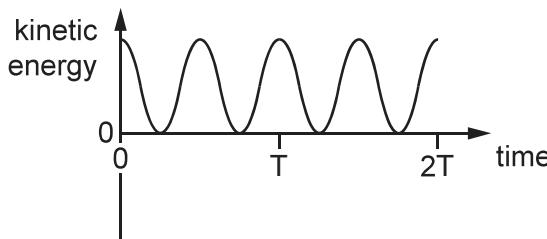
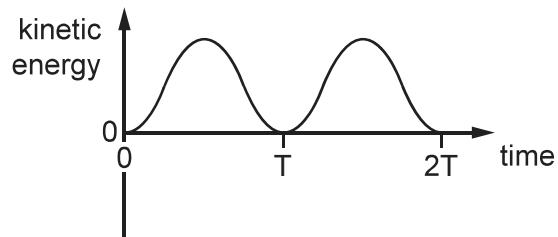
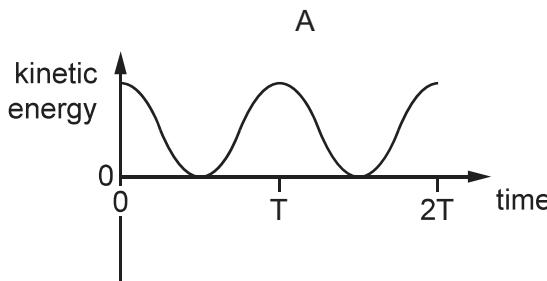
124 Which statement about electromagnetic radiation is correct?

9702/11/ /N/14/Q22

A Waves of wavelength $5 \times 10^{-9} \text{ m}$ are high-energy gamma rays.

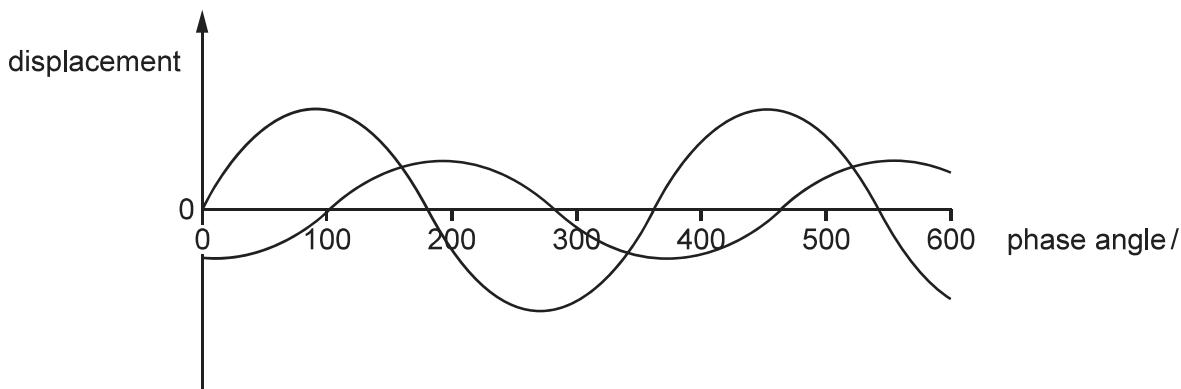

Waves of wavelength $3 \times 10^{-8} \text{ m}$ are ultra-violet waves.

Waves of wavelength $5 \times 10^{-7} \text{ m}$ are infra-red waves.





Waves of wavelength $9 \times 10^{-7} \text{ m}$ are light waves.

125 When sound travels through air, the air particles vibrate. A graph of displacement against time for a single air particle is shown.

9702/11/ /N/14/Q23



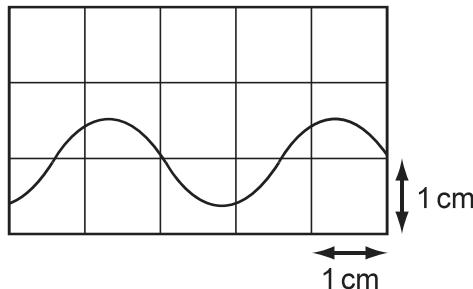
Which graph best shows how the kinetic energy of the air particle varies with time?

126 Two light waves of the same frequency are represented by the diagram.

9702/12/ /J/15/Q24

What could be the phase difference between the two waves?

A 150

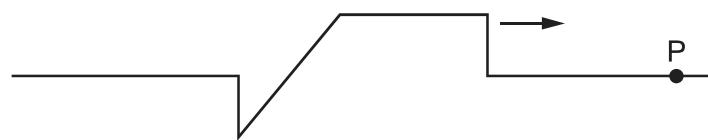

220

260

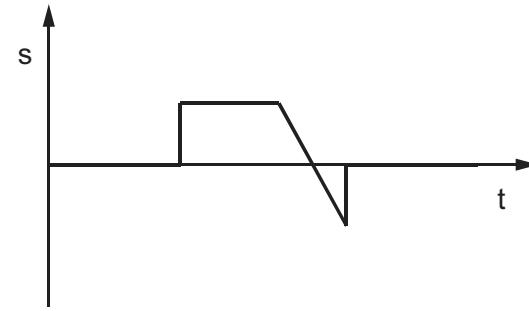
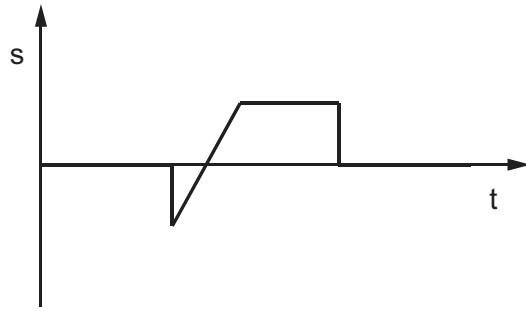
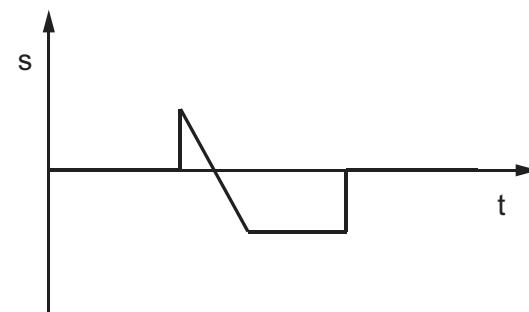
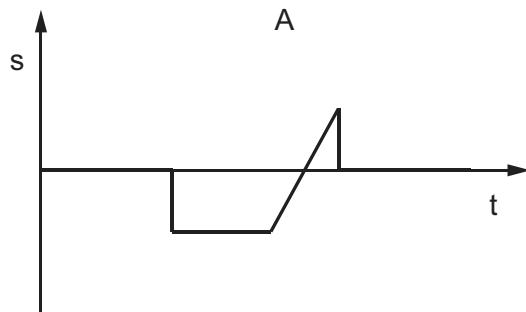
330

127 A cathode-ray oscilloscope (c.r.o.) is used to display the trace from a sound wave. The time-base is set at 5 s mm^{-1} .

9702/13/ /J/15/Q25



What is the frequency of the sound wave?





A 6.7 Hz 67 Hz 6.7 kHz 67 kHz

128 A wave pulse moves along a stretched rope in the direction shown.

9702/13/ /J/15/Q26

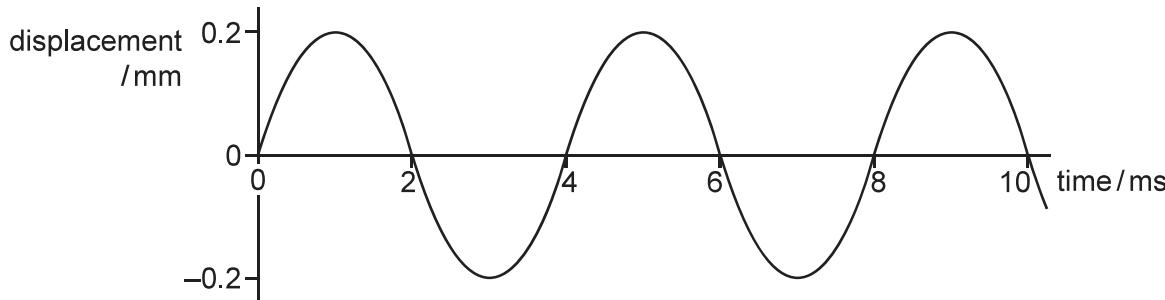
Which diagram correctly shows the variation with time t of the displacement s of the particle P in the rope?

129 A sound wave has a speed of 330 m s^{-1} and a frequency of 50 Hz .

9702/12/ /J/15/Q25

What is a possible distance between two points on the wave that have a phase difference of 60° ?

A 0.03 m 1.1 m 2.2 m 6.6 m


130 Which electromagnetic wave would cause the most significant diffraction effect for an atomic lattice of spacing around 10^{-10} m ?

9702/13/ /J/15/Q28

A infra-red
microwave
ultraviolet
X-ray

131 A sound wave moves with a speed of 320 ms^{-1} through air. The variation with time of the displacement of an air particle due to this wave is shown in the graph.

9702/11/ /J/15/Q24

Which statement about the sound wave is correct?

A The frequency of the wave is 500 Hz .
The graph shows that sound is a transverse wave.
The intensity of the wave will be doubled if its amplitude is increased to 0.4 mm .
The wavelength of the sound wave is 1.2 m .

132 A wave of frequency 15 Hz travels at 24 ms^{-1} through a medium.

9702/11/ /J/15/Q25

What is the phase difference between two points 2 m apart?

A There is no phase difference.
They are out of phase by a quarter of a cycle.
They are out of phase by half a cycle.
They are out of phase by 0° of a cycle.

133 A wave of amplitude a has an intensity of 3.0 W m^{-2} .

9702/11/ /J/15/Q26

What is the intensity of a wave of the same frequency that has an amplitude $2a$?

A 4.2 W m^{-2} 6.0 W m^{-2} 9.0 W m^{-2} 12 W m^{-2}

134 An electromagnetic wave has a wavelength that is numerically of the same order of magnitude as the diameter of a nucleus.

9702/11/ /J/15/Q27

In which region of the electromagnetic spectrum does the wave occur?

A gamma ray

X-ray

visible light

infra-red