CHAPTER 5

pandas: Reading and Writing Daty

In the previous chapter, you got familiar with the pandas library and with all the basic functionalities that it
provides for the data analysis. You have seen that DataFrame and Series are the heart of this library. These
are the material on which to perform all manipulations of data, calculations, and analysis.

In this chapter you will see all of the tools provided by pandas for reading data stored in many types
of media (such as files and databases). In parallel, you will also see how to write data structures directly on
these formats, without worrying too much about the technologies used.

This chapter is focused on a series 0of /O API functions that pandas provides to facilitate as much as
possible the reading and writing data process directly as DataFrame objects on all of the most commonly
used formats. You start to see the text files, then move gradually to more complex binary formats.

At the end of the chapter, you'll also learn how to interface with all common databases, both SQL and
NoSQL, with examples showing how to store the data in a DataFrame directly in them. At the same time, you
will see how to read the data contained in a database and retrieve them already as a DataFrame.

I/0 API Tools

pandas is a library specialized for data analysis, so you expect that it is mainly focused on calculation
and data processing. Moreover, even the process of writing and reading data from/to external files can be
considered a part of the data processing. In fact, you will see how, even at this stage, you can perform some
operations in order to prepare the incoming data to further manipulations.

Thus, this part is very important for data analysis and therefore a specific tool for this purpose must be
present in the library pandas: a set of functions called I/O API These functions are divided into two main
categories, completely symmetrical to each other: readers and writers.

Readers Writers
read_csv to_csv
read_excel to_excel
read_hdf to_hdf
read_sql to_sql
read_json to_json
read_html to_html
read_stata to_stata
read_clipboard to_clipboard

(continued)

103

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

Readers Writers

read_pickle to_pickle

read_msgpack to_msgpack (experimental)
read_gbq to_gbq (experimental)

CSV and Textual Files

Everyone has become accustomed over the years to write and read files in text form. In particular, data
are generally reported in tabular form. If the values in a row are separated by a comma, you have the CSV
(comma-separated values) format, which is perhaps the best-known and most popular format.

Other forms with tabular data separated by spaces or tabs are typically contained in text files of various
types (generally with the extension .txt).

So this type of file is the most common source of data and actually even easier to transcribe and
interpret. In this regard pandas provides a set of functions specific for this type of file.

e read_csv
e read_table

L4 to_csv

Reading Data in CSV or Text Files

From common experience, the most common operation for a person approaching data analysis is to read
the data contained in a CSV file, or at least in a text file.

In order to see how pandas handle this kind of data, start by creating a small CSV file in the working
directory as shown in Listing 5-1 and save it as myCSV_01.csv.

Listing 5-1. myCSV_01.csv

white,red,blue,green,animal
1,5,2,3,cat
2;7;8:5;d08
3,3,6,7,horse
2,2,8,3,duck
4,4,2,1,mouse
Since this file is comma-delimited, you can use the read_csv() function to read its content and convert
it at the same time in a DataFrame object.

>>> csvframe = read_csv('myCSV_0l.csv')
>>> csvframe
white red blue green animal

0 1 5 2 3 cat
1 2 7 8 5 dog
2 3 3 6 7 horse
3 2 2 8 3 duck
4 4 4 2 1 mouse

104

CHAPTER 5 | PANDAS: READING AND WRITING DATA

As you can see the reading of the data in a CSV file is a rather trivial. CSV files are tabulated data in
which the values on the same column are separated by commas. But since CSV files are considered text files,
you can also use the read_table() function, but specifying the delimiter.

>>> read table('cho5 01.csv',sep=",")
white red blue green animal

0 1 5 2 3 cat
1 2 7 8 5 dog
2 3 3 6 7 horse
3 2 2 8 3 duck
4 4 4 2 1 mouse

In the example you just saw, you can notice that in the CSV file, headers to identify all the columns are
in the first row. But this is not a general case, it often happens that the tabulated data begin directly from the
first line (see Listing 5-2).

Listing 5-2. myCSV_02.csv

1,5,2,3,cat
2,7,8,5,dog
3,3,6,7,horse
2,2,8,3,duck
4,4,2,1,mouse

>>> read csv('cho5 02.csv')

15 2 3 cat
0 27 85 dog
1 3 3 6 7 horse
2 2 2 8 3 duck
3 4 4 2 1 mouse

In this case, then you could make sure that it is precisely pandas to assign default names to the columns
by using the header option set to None.

>>> read csv('cho5 02.csv', header=None)

01 2 3 4
01 5 2 3 cat
127 85 dog
2 3 3 6 7 horse
3 2 2 8 3 duck
4 4 4 2 1 mouse

In addition, there is also the possibility to specify the names directly assigning a list of labels to the
names option.

>>> read csv('cho5 02.csv', names=['white','red', 'blue', 'green', 'animal'])
white red blue green animal

0 1 5 2 3 cat
1 2 7 8 5 dog
2 3 3 6 7 horse
3 2 2 8 3 duck
4 4 4 2 1 mouse

105

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

In more complex cases, in which you want to create a DataFrame with a hierarchical structure by
reading a CSV file, you can extend the functionality of the read_csv() function by adding the index_col
option, assigning all the columns to be converted into indexes to it.

To better understand this possibility, create a new CSV file with two columns to be used as indexes of
the hierarchy. Then, save it in the working directory as myCSV_03.csv (Listing 5-3).

Listing 5-3. myCSV_03.csv

color,status,item1,item2,item3
black,up,3,4,6
black,down,2,6,7
white,up,5,5,5
white,down,3,3,2
white,left,1,2,1

red,up,2,2,2

red,down,1,1,4

>>> read csv('cho5 03.csv', index col=['color','status'])
item1 item2 item3
color status

black up 3 4 6
down 2 6 7
white up 5 5 5
down 3 3 2
left 1 2 1
red up 2 2 2
down 1 1 4

Using RegExp for Parsing TXT Files

In other cases, it is possible that the files on which to parse the data do not show separators well defined as
a comma or a semicolon. In these cases, the regular expressions come to our aid. In fact, you can specify a
regexp within the read_table() function using the sep option.

To better understand the use of a regexp and how you can apply it as a criterion for separation of values,
you can start from a simple case. For example, suppose that your file, such as a TXT file, has values separated
by spaces or tabs in an unpredictable order. In this case, you have to use the regexp because only with it you
will take into account as a separator both cases. You can do that using the wildcard /s*. /s stands for space
or tab character (if you wanted to indicate only the tab, you would have used /t), while the pound indicates
that these characters may be multiple (see Table 5-1 for other wildcards most commonly used). That is, the
values may be separated by more spaces or more tabs.

106

CHAPTER 5 " PANDAS: READING AND WRITING DATA

Table 5-1. Metacharacters

single character, except newline

\d digit

\D non-digit character

\s whitespace character

\S non-whitespace character

\n new line character

\t tab character

\uxxxx unicode character specified by the hexadecimal number xxxx

Take for example a case a little extreme, in which we have the values separated from each other by tab
or space in a totally random order (Listing 5-4).

Listing 5-4. ch05_04.txt

white red blue green

1 5 2 3
2 7 8 5
3 3 6 7

>>> read_table('cho5_04.txt',sep="\s*")
white red blue green

0 1 5 2 3
1 2 7 8 5
2 3 3 6 7

As we can see the result we got is a perfect data frame in which the values are perfectly ordered.

Now you will see an example that may seem strange, or unusual, but actually it is not so rare as it may
seem. This example can be very helpful to understand the high potential of a regexp. In fact, usually you
think of the separators as special characters like commas, spaces, tabs, etc. but in reality you could consider
separator characters as alphanumeric characters, or for example, as integers such as 0.

In this example, you need to extract the numeric part from a TXT file, in which there is a sequence of
characters with numerical values and literal characters are completely fused.

Remember to use the header option set to None whenever the column headings are not present in the
TXT file (Listing 5-5).

Listing 5-5. ch05_05.txt

000END123AAA122
001END124BBB321
002END125CCC333

>>> read_table('cho5_05.txt",sep="\D*", header=None)

0 1 2
0 0 123 122
1 124 321
2 2 125 333

107

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

Another fairly common event is to exclude lines from parsing. In fact you do not always want to include
headers or unnecessary comments contained within a file (see Listing 5-6). With the skiprows option you can
exclude all the lines you want, just assigning an array containing the line numbers to not consider in parsing.

Pay attention when you are using this option. If you want to exclude the first five lines, then you have to
write skiprows = 5, but if we want to rule out the fifth line you have to write skiprows = [5].

Listing 5-6. ch05_06.txt

i LOG FILE st

This file has been generated by automatic system
white,red,blue,green,animal

12-Feb-2015: Counting of animals inside the house
1,5,2,3,cat

2,7,8,5,dog

13-Feb-2015: Counting of animals outside the house
3,3,6,7,horse

2,2,8,3,duck

4,4,2,1,mouse

>>> read_table('cho5 06.txt',sep=",",skiprows=[0,1,3,6])
white red blue green animal

0 1 5 2 3 cat
1 2 7 8 5 dog
2 3 3 6 7 horse
3 2 2 8 3 duck
4 4 4 2 1 mouse

Reading TXT Files into Parts or Partially

When large files are processed, or when you're only interested in portions of these files, you often need to
read the file into portions (chunks). This is both to apply any iterations and because we are not interested in
doing the parsing of the entire file.

So if for example you want to read only a portion of the file, you can explicitly specify the number of
lines on which to parse. Thanks to the nrows and skiprows options, you can select the starting line
n (n = SkipRows) and the lines to be read after it (nrows = i).

>>> read csv('cho5_02.csv',skiprows=[2],nrows=3,header=None)
3 4
3 cat
5 dog
3 duck

NN R O

1 2
5 2
7 8
2 8

N = O

Another interesting and fairly common operation is to split into portions that part of the text on which
we want to parse. Then for each portion a specific operation may be carried out, in order to obtain an
iteration, portion by portion.

108

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

For example, you want to add the values of a column every three rows of the file and then insert these
sums within a series. This example is trivial and impractical but is very simple to understand, so that once
you have learned the underlying mechanism you will be able to apply it in much more complex cases.

>>> out = Series()
>»> 1 =0
>>> pieces = read_csv('cho5_01.csv',chunksize=3)
>>> for piece in pieces:
out.set_value(i,piece['white'].sum())

i=1+1
0 6
dtype: int64
0 6
1 6
dtype: int64
>>> out
0 6
1 6

dtype: int64

Writing Data in CSV

In addition to reading the data contained within a file, the writing of a data file produced by a calculation, or
in general the data contained in a data structure, is a common and necessary operation.

For example, you might want to write to a CSV file the data contained in a DataFrame. To do this writing
process you will use the to_csv() function that accepts as an argument the name of the file you generate
(Listing 5-7).

>>> frame2

ball pen pencil paper
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

>>> frame2.to csv('cho5 07.csv')

Listing 5-7. ch05_07.csv

ball,pen,pencil, paper
0,1,2,3

4,5,6,7

8,9,10,11
12,13,14,15

As you can see from the previous example, when you make the writing of a data frame to a file, by
default both indexes and columns are marked on the file. This default behavior can be changed by placing

the two options index and header set to False (Listing 5-8).

>>> frame2.to _csv('cho5 07b.csv', index=False, header=False)

109

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

Listing 5-8. ch05_08.csv

1J2)3
5,6,7
9,10,11
13,14,15

One thing to take into account when making the writing of files is that NaN values present in a data
structure are shown as empty fields in the file (Listing 5-9).

>>> frame3

ball mug paper pen pencil
blue 6 NaN NaN 6 NaN
green NaN NaN NaN NaN NaN
red NaN NaN NaN NaN NaN

white 20 NaN NaN 20 NaN
yellow 19 NaN NaN 19 NaN
>>> frame3.to_csv('cho5_08.csv')

Listing 5-9. ch05_09.csv

,ball,mug,paper,pen,pencil
blue,6.0,,,6.0,

gIEEN, ,,,,

red, IEED)
white,20.0,,,20.0,
yellow,19.0,,,19.0,

But you can replace this empty field with a value to your liking using the na_rep option in the to_csv()
function. Common values may be NULL, 0, or the same NaN (Listing 5-10).

>>> frame3.to_csv('cho5_09.csv', na_rep ='NaN')

Listing 5-10. ch05_10.csv

,ball,mug,paper,pen,pencil
blue,6.0,NaN,NaN,6.0,NaN
green,NaN,NaN,NaN,NaN, NaN
red,NaN,NaN,NaN,NaN, NaN
white,20.0,NaN,NaN,20.0,NaN
yellow,19.0,NaN,NaN,19.0,NaN

Note In the cases specified, data frame has always been the subject of discussion since usually these are
the data structures that are written to the file. But all these functions and options are also valid with regard to
the series

110

CHAPTER 5 " PANDAS: READING AND WRITING DATA

Reading and Writing HTML Files

Also with regard to the HTML format pandas provides the corresponding pair of I/O API functions.
e read_html()
e to_html()

To have these two functions can be very useful. You will appreciate the ability to convert complex
data structures such as DataFrame directly in HTML tables without having to hack a long listing in HTML,
especially if you're dealing with the world web.

The inverse operation can be very useful, because now the major source of data is just the Web world.
In fact a lot of data on the Internet does not always have the form “ready to use,” that is packaged in some
TXT or CSV file. Very often, however, the data are reported as part of the text of web pages. So also having
available a function for reading could prove to be really useful.

This activity is so widespread that it is currently identified as Web Scraping. This process is becoming
a fundamental part of the set of processes that will be integrated in the first part of the data analysis: data
mining and data preparation.

Note Many websites have now adopted the HTML5 format, to avoid any issues of missing modules and
error messages. | recommend strongly to install the module htmlI5lib. Anaconda specified:

conda install html51lib

Writing Data in HTML

Now you see how to convert a DataFrame into an HTML table. The internal structure of the data frame is
automatically converted into nested tags <TH>, <TR>, <TD> retaining any internal hierarchies. Actually you
do not need to know HTML to use this kind of function.

Because sometimes the data structures as the DataFrame can be quite complex and large, to have a
function like this is a great resource for anyone who needs to develop web pages.

To better understand this potential, here’s an example. You can start by defining a simple DataFrame.

Thanks to the to_html() function you have the ability to directly convert the DataFrame in an HTML table.

>>> frame = pd.DataFrame(np.arange(4).reshape(2,2))

Since the I/0 API functions are defined within the pandas data structures, you can call the to_html()
function directly on the instance of the DataFrame.

>>> print(frame.to_html())
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>

111

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

<tbody>
<tr>
<th>0</th>
<td> 0</td>
<td> 1</td>
</tr>
<tr>
<th>1</th>
<td> 2</td>
<td> 3</td>
</tr>
</tbody>
</table>

As you can see, the whole structure formed by the HTML tags needed to create an HTML table was
generated correctly in order to respect the internal structure of the data frame.

In the next example you'll see how the table appears automatically generated within an HTML file. In
this regard, we create a data frame a bit more complex than the previous one, where there are the labels of
the indexes and column names.

>>> frame = pd.DataFrame(np.random.random((4,4)),
index = ['white','black','red', 'blue'],
eee columns = ['up','down’,'right’, 'left'])
>>> frame
up down right left
white 0.292434 0.457176 0.905139 0.737622
black 0.794233 0.949371 0.540191 0.367835
red 0.204529 0.981573 0.118329 0.761552
blue 0.628790 0.585922 0.039153 0.461598

Now you focus on writing an HTML page through the generation of a string. This is a simple and trivial
example, but it is very useful to understand and to test the functionality of pandas directly on the web browser.
First of all we create a string that contains the code of the HTML page.

> s = ['<HTML>']

>>> s.append('<HEAD><TITLE>My DataFrame</TITLE></HEAD>")
>>> s.append('<BODY>")

>>> s.append(frame.to_html())

>>> s.append('</BODY></HTML>")

>>> html = "'.join(s)

Now that all the listing of the HTML page is contained within the variable html, you can write directly
on the file that will be called myFrame.html:

>>> html_file = open('myFrame.html’, 'w")
>>> html file.write(html)
>>> html_file.close()

Now in your working directory will be a new HTML file, myFrame.html. Double-click it to open it
directly from the browser. An HTML table will appear in the upper left as shown in Figure 5-1.

112

CHAPTER 5 " PANDAS: READING AND WRITING DATA

| up| dowﬂ right' left.
Iwhite [0.292434 (0.457176 0.9051390.737622
Iblack [0.794233 [0.9493710.540191 |0.367835
| red [0.204529(0.981573//0.118329(0.761552
| blue [0.628790(0.5859220.039153 [0.461598 |

Figure 5-1. The DataFrame is shown as an HTML table in the web page

Reading Data from an HTML File

As you just saw, pandas can easily generate HTML tables starting from data frame. The opposite process is
also possible; the function read_html () will perform a parsing an HTML page looking for an HTML table.
If found, it will convert that table into an object DataFrame ready to be used in our data analysis.

More precisely, the read_html() function returns a list of DataFrame even if there is only one table.
As regards the source to be subjected to parsing, this can be of different types. For example, you may
have to read an HTML file in any directory. For example you can parse the HTML file you created in the
previous example.

>>> web_frames = pd.read_html('myFrame.html")

>>> web_frames[0]

Unnamed: 0 up down right left
white 0.292434 0.457176 0.905139 0.737622
black 0.794233 0.949371 0.540191 0.367835

red 0.204529 0.981573 0.118329 0.761552
blue 0.628790 0.585922 0.039153 0.461598

w N = O

As you can see, all of the tags that have nothing to do with HTML table are not considered absolutely.
Furthermore web_frames is a list of DataFrames, although in your case, the DataFrame that you are
extracting is only one. However, you can select the item in the list that we want to use, calling it in the classic
way. In this case the item is unique and therefore the index will be 0.

However, the mode most commonly used regarding the read_html() function is that of a direct parsing
of an URL on the Web. In this way the web pages in the network are directly parsed with the extraction of the
tables within them.

For example, now you will call a web page where there is an HTML table that shows a ranking list with
some names and scores.

>>> ranking = pd.read_html('http://www.meccanismocomplesso.org/en/
meccanismo-complesso-sito-2/classifica-punteggio/"')
>>> ranking[0]

Member points levels Unnamed: 3
0 1 BrunoOrsini 1075 NaN
1 2 Berserker 700 NaN
2 3 albertosallu 275 NaN
3 4 Mr.Y 180 NaN
4 5 Jon 170 NaN

113

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

5 6 michele sisi 120 NaN
6 7 STEFANO GUST 120 NaN
7 8 Davide Alois 105 NaN
8 9 C(ecilia Lala 105 NaN

The same operation can be run on any web page that has one or more tables.

Reading Data from XML

In the list of I/O API functions, there is no specific tool regarding the XML (Extensible Markup Language)
format. In fact, although it is not listed, this format is very important, because many structured data are
available in XML format. This presents no problem, since Python has many other libraries (besides pandas)
that manage the reading and writing of data in XML format.

One of these libraries is the Ixml library, which stands out for its excellent performance during the parsing
of very large files. In this section you will be shown how to use this module for parsing XML files and how to
integrate it with pandas to finally get the DataFrame containing the requested data. For more information
about this library, I highly recommend visiting the official website of Ixml: http://1xml.de/index.html.

Take for example an XML file as shown in Listing 5-11. Write down and save it with the name books.xml
directly in your working directory.

Listing 5-11. books.xml

<?xml version="1.0"?>
<Catalog>
<Book id="ISBN9872122367564">
272103_1_EnRoss, Mark</Author>
<Title>XML Cookbook</Title>
<Genre>Computer</Genre>
<Price>23.56</Price>
<PublishDate»>2014-22-01</PublishDate>
</Book>
<Book id="ISBN9872122367564">
272103_1_EnBracket, Barbara</Author>
<Title>XML for Dummies</Title>
<Genre>Computer</Genre>
<Price>35.95</Price>
<PublishDate>2014-12-16</PublishDate>
</Book>
</Catalog>

In this example you will take the data structure described in the XML file to convert it directly into a
DataFrame. To do so the first thing to do is use the sub-module objectify of the Ixml library, importing it in

the following way.

>>> from 1xml import objectify

114

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

Now you can do the parser of the XML file with just the parse() function.

>>> xml = objectify.parse('books.xml")

>>> xml

<1xml.etree. ElementTree object at 0x0000000009734E08>

You got an object tree, which is an internal data structure of the module 1lxml.

Look in more detail at this type of object. To navigate in this tree structure, so as to select
element by element, you must first define the root. You can do this with the getroot() function.
>>> root = xml.getroot()

Now that the root of the structure has been defined, you can access the various nodes of the tree, each
corresponding to the tag contained within the original XML file. The items will have the same name as
the corresponding tags. So to select them simply write the various separate tags with points, reflecting in a
certain way the hierarchy of nodes in the tree.

>>> root.Book.Author
'Ross, Mark'

>>> root.Book.PublishDate
'2014-22-01"

In this way you access nodes individually, but you can access various elements at the same time using
getchildren(). With this function, you'll get all the child nodes of the reference element.

>>> root.getchildren()
[<Element Book at 0x9c66688>, <Element Book at 0x9c66e08>]

With the tag attribute you get the name of the tag corresponding to the child node.

>>> [child.tag for child in root.Book.getchildren()]
['Author', 'Title', 'Genre', 'Price', 'PublishDate’]

while with the text attribute you get the value contained between the corresponding tags.

>>> [child.text for child in root.Book.getchildren()]
['Ross, Mark', 'XML Cookbook', 'Computer', '23.56', '2014-22-01']

However, regardless of the ability to move through the Ixml.etree tree structure, what you need is
to convert it into a data frame. Define the following function, which has the task of analyzing the entire
contents of a eTree to fill a DataFrame line by line.

>>> def etree2df(root):
column_names = []
for i in range(0,len(root.getchildren()[0].getchildren())):
column_names.append(root.getchildren()[0].getchildren()[i].tag)
xml:frame = pd.DataFrame(columns=column_names)
for j in range(0, len(root.getchildren())):
obj = root.getchildren()[j].getchildren()
texts = []
for k in range(0, len(column names)):
texts.append(obj[k].text)
row = dict(zip(column_names, texts))

115

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

row_s = pd.Series(row)

TOW_S.name = j

xml:frame = xml:frame.append(row s)
return xml:frame

>>> etree2df(root)

Author Title Genre Price PublishDate
0 Ross, Mark XML Cookbook Computer 23.56 2014-22-01
1 Bracket, Barbara XML for Dummies Computer 35.95 2014-12-16

Reading and Writing Data on Microsoft Excel Files

In the previous section, you saw how the data can be easily read from CSV files. It is not uncommon,
however, that there are data collected in tabular form in the Excel spreadsheet.

pandas provides specific functions also for this type of format. You have seen that the I/O API provides
two functions to this purpose:

e to_excel()
e read_excel()

As regards reading Excel files, the read_excel() function is able to read both Excel 2003 (.xls) files and
Excel 2007 (.xIsx) files. This is possible thanks to the integration of the internal module xIrd.

First, open an Excel file and enter the data as shown in Figure 5-2. Copy data in sheetl and sheet2.
Then save it as data.xls.

A B C D E
1 white red green black
2 |a 12 23 17 18
3 b 22 16 19 18
4 Ic 14 23 22 21
s
6
A B C D E
yellow purple blue orange
11 16 a4 22
B 20 22 23 44
& 30 31 37 32

L1

Figure 5-2. The two data sets in sheetl and sheet2 of an Excel file

116

To read the data contained within the XLS file and obtain the conversion into a data frame, you only
have to use the read_excel() function.

>>> pd.read excel('data.x1s")
white red green black

a 12 23 17 18
22 16 19 18
d 14 23 22 21

Asyou can see, by default, the returned DataFrame is composed of the data tabulated in the first

CHAPTER 5 " PANDAS: READING AND WRITING DATA

spreadsheets. If, however, you'd need to load the data in the second spreadsheet, and then specify the name
of the sheet or the number of the sheet (index) just as the second argument.

>>> pd.read_excel('data.x1s', 'Sheet2")

yellow purple blue orange

A 11 16 44 22
B 20 22 23 a4
C 30 31 37 32

>>> pd.read excel('data.x1s',1)
yellow purple blue orange

A 11 16 44 22
B 20 22 23 44
C 30 31 37 32

The same applies for writing. So to convert a data frame in a spreadsheet on Excel you have to write

as follows.

>>> frame = pd.DataFrame(np.random.random((4,4)),

index = ['exp1','exp2’,'exp3’, 'exp4'],

>>> frame
Jan2015 Fab2015

In the working directory you will find a new Excel file containing the data as shown in Figure 5-3.

Mar2015
expl 0.030083 0.065339 0.960494
exp2 0.531885 0.706945 0.964943
exp3 0.981325 0.868894 0.947871
exp4 0.832527 0.357885 0.538138
>>> frame.to_excel('data2.x1sx")

Apr2005
0.510847
0.085642
0.387600
0.357990

Mar2015

columns = ['Jan2015','Fab2015", 'Mar2015", 'Apr2005'])

E

Apr2005

0,3876

A B D
1 Jan2015 | Fab2015
2 expl 0,030083 0,065339 0,9604%4 0,510847
3 exp2 0,531885 0,706945 0,964943 0,085642
4 exp3 0,981325 0,868894 0,947871
5 exp4d 0,832527 0,357885 0,538138

b1

Figure 5-3. The DataFrame in the Excel file

0,35799

117

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

JSON Data

JSON (JavaScript Object Notation) has become one of the most common standard formats, especially for the
transmission of data through the Web. So it is normal to have to do with this data format if you want to use
the available data on the Web.

The special feature of this format is its great flexibility, though its structure is far from being the one to
which you are well accustomed, i.e., tabular.

In this section you will see how to use the read_json() and to_json() functions to stay within the I/O
API functions discussed in this chapter. But in the second part you will see another example in which you
will have to deal with structured data in JSON format much more related to real cases.

In my opinion, a useful online application for checking the JSON format is JSONViewer, available at
http://jsonviewer.stack.hu/. This web application, once you entered or copied data in JSON format,
allows you to see if the format you entered is invalid. Moreover it displays the tree structure so that you can
better understand its structure (as shown in Figure 5-4).

Viewer Text

=a{}yson
{3
o white : 0
W black : 4
Wred:8
M blue: 12
:J{}down
o white : 1
¥ black : 5
Wred:9
¥ blue: 13
3 {} right
o white : 2
W black : 6
W red: 10
M blue: 14
3} et
white : 3
W black : 7
Wred: 11
¥ blue: 15

Figure 5-4. J]SONViewer

118

CHAPTER 5 " PANDAS: READING AND WRITING DATA

Let’s begin with the more useful case, that is, when you have a DataFrame and you need to convert it
into a JSON file. So, define a DataFrame and then call the to_json() function on it, passing as argument the
name of the file that you want to create.

>>> frame = pd.DataFrame(np.arange(16).reshape(4,4),

index=['white', 'black', 'red', 'blue'],
columns=['up', 'down', 'right','left'])
>>> frame.to_json('frame.json")

In the working directory you will find a new JSON file (see Listing 5-12) containing the DataFrame data
translated into JSON format.

Listing 5-12. frame.json

{"up":{"white":0,"black":4, "red":8,"blue":12},"down" : {"white":1, "black":5, "red":9, "blue" :13},
"right":{"white":2,"black":6,"red":10, "blue":14},"left" : {"white":3,"black":7, "red":11,"blue":15}}

The converse is possible, using the read_json() with the name of the file passed as an argument.

>>> pd.read_json('frame.json")
down left right up

black 5 7 6 4
blue 13 15 14 12
red 9 11 10 8
white 1 3 2 0

The example you have seen is a fairly simple case in which the JSON data were in tabular form (since
the file frame.json comes from a DataFrame). Generally, however, the JSON files do not have a tabular
structure. Thus, you will need to somehow convert the structure dict file in tabular form. You can refer this
process as normalization.

The library pandas provides a function, called json_normalize(), that is able to convert a dict or a list in
a table. First you have to import the function

>>> from pandas.io.json import json_normalize

Then write a JSON file as described in Listing 5-13 with any text editor. Save it in the working directory
as books.json.

Listing 5-13. books.json

[{"writer": "Mark Ross",
"nationality": "USA",
"books": [
{"title": "XML Cookbook", "price": 23.56},
{"title": "Python Fundamentals", "price": 50.70},
{"title": "The NumPy library", "price": 12.30}
]
b

119

CHAPTER 5 " PANDAS: READING AND WRITING DATA

{"writer": "Barbara Bracket",
"nationality": "UK",
"books": [
{"title": "Java Enterprise", "price": 28.60},
{"title": "HTML5", "price": 31.35},
{"title": "Python for Dummies", "price": 28.00}
]
}

As you can see, the file structure is no longer tabular, but more complex. Then the approach with the
read_json() function is no longer valid. As you learn from this example, you can still get the data in tabular
form from this structure. First you have to load the contents of the JSON file and convert it into a string.

>>> file = open('books.json','r")
>>> text = file.read()
>>> text = json.loads(text)

Now you are ready to apply the json_normalize() function. From a quick look at the contents of the
data within the JSON file, for example, you might want to extract a table that contains all the books. Then
write the books key as second argument.

>>> json_normalize(text, 'books")

price title
0 23.56 XML Cookbook
1 50.70 Python Fundamentals
2 12.30 The NumPy library
3 28.60 Java Enterprise
4 31.35 HTML5
5

28.00 Python for Dummies

The function will read the contents of all the elements that have books as key. All properties will be
converted into nested column names while the corresponding values will fill the DataFrame. As regards the
indexes, the function assigns a sequence of increasing numbers.

However, you get a DataFrame containing only some internal information. It would be useful to add the
values of other keys on the same level. In this case you can add other columns by inserting a key list as the
third argument of the function.

>>> json_normalize(text2, 'books',['writer', 'nationality'])

price title nationality writer
0 23.56 XML Cookbook USA Mark Ross
1 50.70 Python Fundamentals USA Mark Ross
2 12.30 The NumPy library USA Mark Ross
3 28.60 Java Enterprise UK Barbara Bracket
4 31.35 HTML5 UK Barbara Bracket
5 28.00 Python for Dummies UK Barbara Bracket

Now as a result you got a DataFrame from a starting tree structure.

120

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

The Format HDF5

So far you have seen how to write and read data in text format. When the data analysis involves large
amounts of data it is preferable to use them in binary format. There are several tools in Python to handle
binary data. A library that is having some success in this area is the HDF5 library.

The HDF term stands for Hierarchical Data Format, and in fact this library is concerned with the reading
and writing of HDF?5 files containing a structure with nodes and the possibility to store multiple datasets.

This library, fully developed in C, however, has also interfaces with other types of languages like
Python, Matlab, and Java. Thus, its extensive use is one of the reasons for its rapid spread. But not only for
this, in fact; another reason is its efficiency, especially when using this format to save huge amounts of data.
Compared to other formats that work more simply in binary, HDF5 supports compression in real time,
thereby taking advantage of repetitive patterns within the data structure to compress the file size.

At present, the possible choices in Python are two: PyTables and h5py. These two forms differ in several
aspects and therefore their choice depends very much on the needs of those who use it.

h5py provides a direct interface with the high-level APIs HDF5, while PyTables makes abstract many of
the details of HDF5 to provide more flexible data containers, indexed tables, querying capabilities, and other
media on the calculations.

pandas has a class like dict called HDFStore, using PyTables to store pandas objects. So before working
with the format HDF5, you must import the class HDFStore.

>>> from pandas.io.pytables import HDFStore
Now you're ready to store the data of a data frame within a file .h5. First, create a DataFrame.
>>> frame = pd.DataFrame(np.arange(16).reshape(4,4),
index=['white', 'black’, 'red', 'blue'],
columns=['up', 'down','right','left'])
Now create a file HDF5 calling it mydata.h5, then enter inside the data of the DataFrame.
>>> store = HDFStore('mydata.h5')
>>> store['obj1'] = frame

From here, you can guess how you can store multiple data structures within the same HDF5
file, specifying for each of them a label.

>>> frame2

up down right left
white 0 0.5 1 1.5
black 2 2.5 3 3.5
red 4 4.5 5 5.5
blue 6 6.5 7 1.5
>>> store['obj2'] = frame2

So with this type of format, you can store multiple data structures within a single file, represented by the
store variable.

>>> store

<class 'pandas.io.pytables.HDFStore'>

File path: mydata.hs

/obj1 frame (shape->[4,4])

121

CHAPTER 5 " PANDAS: READING AND WRITING DATA

Even the reverse process is very simple. Taking account of having an HDF?5 file containing various data
structures, objects inside can be called in the following way:

>>> store['obj2']
up down right left

white 0 0.5 1 1.5
black 2 2.5 3 3.5
red 4 4.5 5 5.5
blue 6 6.5 7 7.5

Pickle—Python Object Serialization

The pickle module implements a powerful algorithm for serialization and de-serialization of a data structure
implemented in Python. Pickling is the process in which the hierarchy of an object is converted into a stream
of bytes.

This allows an object to be transmitted and stored, and then to be rebuilt by the receiver itself retaining
all the original features.

In Python, the picking operation is carried out by the pickle module, but currently there is a module called
cPickle which is the result of an enormous amount of work optimizing the pickle module (written in C).
This module can be in fact in many cases even 1,000 times faster than the pickle module. However, regardless
of which module you do use, the interfaces of the two modules are almost the same.

Before moving to explicitly mention the I/O functions of pandas that operate on this format, let’s look in
more detail at cPickle module and how to use it.

Serialize a Python Object with cPickle
The data format used by the pickle module (or cPickle) is specific to Python. By default, an ASCII
representation is used to represent it, in order to be readable from the human point of view. Then opening a
file with a text editor you may be able to understand its contents. To use this module you must first import it
>>> import cPickle as pickle

Then create an object sufficiently complex to have an internal data structure, for example a dict object.

>>> data = { 'color': ['white','red'], 'value': [5, 7]}

Now you will perform a serialization of the data object through the dumps() function of the
cPickle module.

>>> pickled data = pickle.dumps(data)
Now, to see how it was serialized the dict object, you need to look at the content of the pickled_data variable.

>>> print pickled data
(dpa

S'color'

p2

(1p3

S'white’

122

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

p4

aS'red’

p5
asS'value'
p6

(1p7

Is

al7

as.

Once you have serialized data, they can easily be written on a file, or sent over a socket, pipe, etc.
After being transmitted, it is possible to reconstruct the serialized object (deserialization) with the
loads() function of the cPickle module.

>>> nframe = pickle.loads(pickled_data)
>>> nframe
{"color': ['white', 'red'], ‘value': [5, 7]}

Pickling with pandas

As regards the operation of pickling (and unpickling) with the pandas library, everything remains much
facilitated. No need to import the cPickle module in the Python session and also the whole operation is
performed implicitly.

Also, the serialization format used by pandas is not completely in ASCII.

>>> frame = pd.DataFrame(np.arange(16).reshape(4,4), index = ['up','down','left’, 'right'])
>>> frame.to_pickle('frame.pkl")

Now in your working directory there is a new file called frame.pkl containing all the information about
the frame DataFrame.
To open a PKL file and read the contents, simply use the command

>>> pd.read pickle('frame.pkl')
0 1 2 3

up o 1 2 3

down 4 5 6 7

left 8 9 10 11

right 12 13 14 15

As you can see, all the implications on the operation of pickling and unpickling are completely hidden
from the pandas user, allowing it to make the job as easy and understandable as possible, for those who
must deal specifically with the data analysis.

Note When you make use of this format make sure that the file you open is safe. Indeed, the pickle format
was not designed to be protected against erroneous and maliciously constructed data.

123

CHAPTER 5 " PANDAS: READING AND WRITING DATA

Interacting with Databases

In many applications, the data rarely come from text files, given that this is certainly not the most efficient
way to store data.

The data are often stored in an SQL-based relational database, and also in many alternative NoSQL
databases that have become very popular in recent times.

Loading data from SQL in a DataFrame is sufficiently simple and pandas has some functions to simplify
the process.

The pandas.io.sql module provides a unified interface independent of the DB, called sqlalchemy. This
interface simplifies the connection mode, since regardless of the DB, the commands will always be the same.
For making a connection you use the create_engine() function. With this feature you can configure all the
properties necessary to use the driver, as a user, password, port, and database instance.

Here is a list of examples for the various types of databases:

>>> from sqlalchemy import create engine
For PostgreSQL:

>>> engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase")
For MySOQL

>>> engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo")

For Oracle

>>> engine = create engine('oracle://scott:tiger@127.0.0.1:1521/sidname")

For MSSOL

>>> engine = create_engine('mssql+pyodbc://mydsn")

For SQLite

>>> engine = create engine('sqlite:///foo.db")

Loading and Writing Data with SQLite3

As a first example, you will use a SQLite database using the driver’s built-in Python sqlite3. SQLite3 is a
tool that implements a DBMS SQL in a very simple and lightweight way, so it can be incorporated within
any application implemented with Python language. In fact, this practical software allows you to create an
embedded database in a single file.

This makes it the perfect tool for anyone who wants to have the functions of a database without having
to install a real database. SQLite3 could be the right choice for anyone who wants to practice before going on
to a real database, or for anyone who needs to use the functions of a database for the collection of data, but
remaining within a single program, without worry to interface with a database.

Create a data frame that you will use to create a new table on the SQLite3 database.

>>> frame = pd.DataFrame(np.arange(20).reshape(4,5),

ces columns=['white','red', 'blue', 'black’,'green'])

>>> frame
white red blue black green

0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19

124

CHAPTER 5 " PANDAS: READING AND WRITING DATA

Now it’s time to implement the connection to the SQLite3 database.
>>> engine = create engine('sqlite:///foo.db")

Convert the DataFrame in a table within the database.
>>> frame.to_sql('colors',engine)

Instead, to make a reading of the database, you have to use the read_sql() function with the name of
the table and the engine.

>>> pd.read_sql('colors',engine)
index white red blue black green

0 0 0 1 2 3 4
1 1 5 6 7 8 9
2 2 10 11 12 13 14
3 3 15 16 17 18 19

Asyou can see, even in this case, the writing operation on the database has become very simple thanks
to the I/O APIs available in the pandas library.

Now you'll see instead the same operations, but not using the I/O API. This can be useful to get an idea
of how pandas proves to be an effective tool even as regards the reading and writing data to a database.

First, you must establish a connection to the DB and create a table by defining data types corrected, so
as to accommodate the data to be loaded.

>>> import sqlite3
>>> query = """
... CREATE TABLE test
... (a VARCHAR(20), b VARCHAR(20),
¢ REAL, d INTEGER
R H
>>> con = sqlite3.connect(' :memory:")
>>> con.execute(query)
<sqlite3.Cursor object at 0x0000000009E7D730>
>>> con.commit()

Now you can enter data through the SQL INSERT statement.

>>> data = [('white','up',1,3),
('black','down',2,8),
('green’,'up’,4,4),

cee ('red','down',5,5)]

>>> stmt = "INSERT INTO test VALUES(?,?,2,2)"

>>> con.executemany(stmt, data)

<sqlite3.Cursor object at 0x0000000009E7D8FO0>

>>> con.commit()

125

CHAPTER 5 | PANDAS: READING AND WRITING DATA

Now that you've seen how to load the data on a table, it is time to see how to query the database to get
the data you just recorded. This is possible through an SQL SELECT statement.

>>> cursor = con.execute('select * from test')

>>> cursor

<sqlite3.Cursor object at 0x0000000009E7D730>

>>> rows = cursor.fetchall()

>>> TOWS

[(u'white', u'up', 1.0, 3), (u'black', u'down', 2.0, 8), (u'green', u'up', 4.0, 4),
(u'red', 5.0, 5)]

You can pass the list of tuples to the constructor of the DataFrame, and if you need the name of the
columns, you can find them within the description attribute of the cursor.

>>> cursor.description
(('a', None, None, None, None, None, None), ('b', None, None, None, None, None, None),
('c', None, None, None, None, None), ('d', None, None, None, None, None, None))
>>> pd.DataFrame(rows, columns=zip(*cursor.description)[0])

a b c d
0 white up
1 black down
2 green up
3 red down

Ui BN R
v B o w

As you may well see this approach is quite laborious.

Loading and Writing Data with PostgreSQL

From pandas 0.14 postgresql database is also supported. So double-check if the version on your PC
corresponds to this version or greater.

>>> pd.__version _
>>> '0.15.2'

To make this example you must have installed on your system a PostgreSQL database. In my case I
created a database called postgres, with ‘postgres’ as user and "password' as password. Replace these values
with the values corresponding to your system.

Now establish a connection with the database:

>>> engine = create_engine('postgresql://postgres:password@localhost:5432/postgres")

Note In this example, depending on how you installed the package on Windows, often you get the following
error message:

from psycopg2. psycopg import BINARY, NUMBER, STRING, DATETIME, ROWID
ImportError: DLL load failed: The specified module could not be found.

126

CHAPTER 5 " PANDAS: READING AND WRITING DATA

This probably means you don’t have the PostgreSQL DLLs (libpq.dll in particular) in your PATH. Add
one of the postgres\x.x\bin directories to your PATH and you should be able to connect from Python to your

PostgreSQL installations.
Create a DataFrame object:

>>> frame = pd.DataFrame(np.random.random((4,4)),
index=['exp1', 'exp2',"exp3', 'exp4'],
columns=['feb', 'mar', 'apr', 'may']);

Now we see how easily you can transfer this data to a table. With the to_sql() you will record the data in

a table called dataframe.

>>> frame.to_sql('dataframe’,engine)

pgAdmin 111 is a graphical application for managing PostgreSQL databases. It’s a very useful tool and is

present on both Linux and Windows. With this application is easy to see the table dataframe just created

(see Figure 5-5).

w

File Edit Plugins View Tools Help

SO 4T OEES 9P

Object browser
k5 Server Groups
= E Servers (1)
=[] PostgresQL 9.3 focalhost:5432)
= -['__,: Databases (1)
| postgres
¥ Catalogs (2)
Event Triggers (0)
(5143 Extensions (2)
-8 Schemas (1)
=- & publc
) Cotations (0)
Domains (0)
FTS Configurations (0)
{lll FTS Dictionaries (0)
{5 FTS Parsers (0)
{ij FTS Templates (0)
25 Functions (0)
% Sequences (0)
-5 Tables (1)
=7 dataframe
= % Columns (S)

K17}

@@

B may
P4 Constraints (0)
i@ Indexes (1)
% Rules (0)
@ Triggers (0)
& Trigger Functions (0)
11 Views (0)
% Slony Replication (0)
B Tablespaces (2)
43 Group Roles (0)
154 | nain Boles (1)

pgAdmin Il

- N

[properties | stasis_ oepndences 0w

== Table: dataframe

=~ DROF TABLE dataframe;

CREATE TABLE dataframe

B

index text,

feb double precisicn,

mar double precisien,

apr double precision,

may double precisicn
)

Blwite
|_ OIDS=FALSE
)

ALTER TABLE dataframe
CWHER IO postgres;

-= Index: ix dataframe index

-- DROP IHDEX ix dataframe index;

CREATE INDEX ix dataframe index
CN dataframe

USING btree
{index COLLATE pg catalog.“default”};

Retrieving details on table dataframe... Done,

Figure 5-5. The pdAdminlIl application is a perfect graphical DB manager for PostgreSQL

0,00 secs

127

CHAPTER 5 " PANDAS: READING AND WRITING DATA

If you know the SQL language well, a more classic way to see the new created table and its contents is
through a psql session.

>>> psql -U postgres

In my case I am connected with the postgres user; it may be different in your case. Once connected to
the database, perform an SQL query on the newly created table.

postgres=# SELECT * FROM DATAFRAME;

index | feb | max | apr | may

------- B e e T
expl | 0.757871296789076 | 0.422582915331819 | 0.979085739226726 | 0.332288515791064
exp2 | 0.124353978978927 | 0.273461421503087 | 0.049433776453223 | 0.0271413946693556
exp3 | 0.538089036334938 | 0.097041417119426 | 0.905979807772598 | 0.123448718583967
exp4 | 0.736585422687497 | 0.982331931474687 | 0.958014824504186 | 0.448063967996436
(4 righe)

Even the conversion of a table in a DataFrame is a trivial operation. Even here there is a read_sql_table()
function that reads directly on the database and returns a DataFrame.

>>> pd.read_sql table('dataframe’,engine)

index feb mar apr may
expl 0.757871 0.422583 0.979086 0.332289
exp2 0.124354 0.273461 0.049434 0.027141
exp3 0.538089 0.097041 0.905980 0.123449
exp4 0.736585 0.982332 0.958015 0.448064

w N B O

But when you want to make a reading of data in a database, the conversion of a whole and single table
into a DataFrame is not the most useful operation. In fact, those who work with relational databases prefer to
use the SQL language to choose what data and in what form to export by inserting an SQL query.

The text of an SQL query can be integrated in the read_sql_query() function.

>>> pd.read_sql_query('SELECT index,apr,may FROM DATAFRAME WHERE apr > 0.5',engine)
index apr may

0 expl 0.979086 0.332289

1 exp3 0.905980 0.123449

2 exp4 0.958015 0.448064

Reading and Writing Data with a NoSQL Database: MongoDB

Among all the NoSQL databases (BerkeleyDB, Tokyo Cabinet, MongoDB) MongoDB is becoming the most
widespread. Given its diffusion in many systems, it seems appropriate to consider the possibility of reading
and writing data produced with the pandas library during a data analysis.

First, if you have MongoDB installed on your PC, you can start the service to point to a given directory.

mongod --dbpath C:\MongoDB_data

128

CHAPTER 5 ' PANDAS: READING AND WRITING DATA

Now that the service is listening on port 27017 you can connect to this database using the official driver
for MongoDB: pymongo.

>>> import pymongo
>>> client = MongoClient('localhost',27017)

A single instance of MongoDB is able to support multiple databases at the same time. So now you need
to point to a specific database.

>>> db = client.mydatabase

>>> db

Database(MongoClient('localhost', 27017), u'mycollection')
In order to refer to this object, you can also use

>>> client['mydatabase’]

Database(MongoClient('localhost', 27017), u'mydatabase')

Now that you have defined the database, you have to define the collection. The collection is a group of
documents stored in MongoDB and can be considered the equivalent of the tables in an SQL database.

>>> collection = db.mycollection

>>> db['mycollection’]

Collection(Database(MongoClient('localhost', 27017), u'mydatabase'), u'mycollection')
>>> collection

Collection(Database(MongoClient('localhost', 27017), u'mydatabase'), u'mycollection')
Now it is the time to load the data in the collection. Create a DataFrame.

>>> frame = pd.DataFrame(np.arange(20).reshape(4,5),

. columns=['white', 'red', 'blue’, 'black', 'green'])

>>> frame

white red blue black green
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19

Before being added to a collection, it must be converted into a JSON format. The conversion process is
not as direct as you might imagine; this is because you need to set the data to be recorded on DB and at the
same time in order to be re-extract as DataFrame as fairly and as simply as possible.

>>> import json

>>> record = json.loads(frame.T.to json()).values()

>>> record

[{u'blue': 7, u'green': 9, u'white': 5, u'black': 8, u'red': 6}, {u'blue': 2, u'green': 4,
u'white': 0, u'black': 3, u'red': 1}, {u'blue': 17, u'green': 19, u'white': 15,

u'black': 18, u'red': 16}, {u'blue': 12, u'green': 14, u'white': 10, u'black’: 13,

u'red': 11}]

Now you are finally ready to insert a document in the collection, and you can do this with
the insert() function.

>>> collection.mydocument.insert(record)

[ObjectId('54fc3afbobfbees7f4260357"'), ObjectId('54fc3atbobfbeed7f4260358"),
ObjectId('s54fc3afbobfbeed7f4260359'), ObjectId('54fc3afbobfbees7f426035a")]

129

CHAPTER 5 " PANDAS: READING AND WRITING DATA

As you can see, you have an object for each line recorded. Now that the data has been loaded into the
document within the MongoDB database, you can execute the reverse process, i.e., reading data within a
document and then converting them to a DataFrame.

>>> cursor = collection['mydocument’].find()
>>> dataframe = (list(cursor))
>>> del dataframe[' id']
>>> dataframe
black blue green red white

0 8 7 9 6 5
1 3 2 4 1 0
2 18 17 19 16 15
3 13 12 14 11 10

You have removed the column containing the ID numbers for the internal reference of MongoDB.

Conclusions

In this chapter, you saw how to use the features of the I/O API of the pandas library in order to read and write
data to files and databases while preserving the structure of the DataFrames. In particular several modes of
writing and reading according to the type of format are illustrated.

In the last part of the chapter you have seen how to interface to the most popular models of Database to
record and/or read the data into it directly as DataFrame ready to be processed with the pandas tools.

In the next chapter, you'll see the most advanced features of the library pandas. Complex instruments
like the GroupBy and other forms of data processing are discussed in detail.

130

