> Chapter P1

Practical skills at AS Level

LEARNING INTENTIONS

BEFORE YOU START

What are physical properties of materials?

What quantities do all these instruments measure: protractor, 30 cm ruler, metre rule, micrometer

screw gauge, calipers, newton-meter, balance, measuring cylinder, thermometer, stopwatch,
ammeter and voltmeter?

Can you suggest, for each instrument in the list, what is its range and its smallest scale division,
and suggest a simple experimental problem in using it?







P1.1 Practical work in physics

Throughout your A Level physics course, you will develop your skills in practical work, and they will be
assessed at both AS & A Level. This chapter outlines the skills you will develop in the first year of the
course; it includes some activities to test your understanding as you go along.

The sciences differ from most other subjects in that they involve not only theory but also practical work.
The very essence of science is that theory can be tested by practical experiment. So, the ability to carry
out practical exercises in a logical and scientific manner is essential.



P1.2 Using apparatus and following
instructions

You need to familiarise yourself with the use of simple measuring instruments such as metre rules,
balances, protractors, stopwatches, ammeters and voltmeters, and even more complicated ones such as a
micrometer screw gauge and calipers.

When using measuring instruments like these you need to ensure that you are fully aware of what each
division on a scale represents. If you look at Figure P1.1 you will see that on the first ruler each division is
1 mm, and on the second each division is 2 mm.

If you use instruments incorrectly, you may introduce errors into your readings. For example, when taking
a reading your line of sight should always be perpendicular to the scale that you are using. Otherwise,
you will introduce a parallax error; this is shown in Figure P1.2. Looking from point A the length of the
rod appears to be 21 mm, from point C it appears to be 25 mm and from point B, the correct position, the
length is 23 mm.
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Figure P1.1: When reading from a scale, make sure that you know what each division on the scale
represents.

A rule, for example, a metre rule, or a ruler, for example, an ordinary school ruler of length 30 cm, are
simple measuring instruments with a smallest division of 1 mm. Other instruments have a greater
precision because their smallest scale division is less than 1 mm. Here, we will look at two of them.

!

30

20

10

mm

‘II||||||||IIII|||I|[|||II|||||

0
L

Figure P1.2: Parallax error.

Calipers

Calipers are designed to grip an object with two jaws and, in the example shown in Figure P1.3, to
measure the diameter of the object. They can also be used to measure the internal diameter of a tube, for
example, if the two prongs are placed inside the tube and the moving part of the calipers is adjusted until
the prongs just grip the inside of the tube.
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Figure P1.3: Using dial calipers.

The calipers shown in Figure P1.3 are dial calipers, although other versions such as vernier calipers are
still sometimes used. As the sliding scale moves along, one rotation of the dial moves the jaws 1 mm
further apart. Since the dial shown has 100 divisions, each of these divisions is - = 0.01 mm. The
object shown has a diameter of 12 mm on the fixed scale and 25 divisions or 0.25 mm on the dial, so the

diameter of the object is 12.25 mm.

Micrometer screw gauge

A micrometer screw gauge, or more simply a micrometer, is shown in Figure P1.4. This also has two
scales. The main scale is on the shaft and the fractional scale is on the rotating barrel. One rotation of the
barrel moves the end of the barrel 0.50 mm along the shaft. The barrel has 50 divisions so each division

represents %2* = 0.01 mm.

Figure P1.4: Using a micrometer screw gauge.

To use the micrometer, turn the barrel until the jaws just tighten on the object. Some micrometers have a
ratchet or slip mechanism to prevent the user from tightening too hard and damaging the micrometer or
object. Read the main scale to the nearest 0.5 mm, then read the number of divisions on the sleeve, which
will be in 0.01 mm, and finally add the two readings. You should realise that the smallest division on the
micrometer is 0.01 mm.

Before you start to use a micrometer or dial calipers, it is usual to check if there is a zero error. This is
done by bringing the jaws together without any object between them. Obviously, the reading should be
zero, but if the instrument is worn or has been used badly the reading may not be zero. When you have
taken this zero error reading, it should be added to or subtracted from every other reading that you take
with the instrument. If the jaws do not quite close to the zero mark, there is a positive zero error, and this
zero error reading should be subtracted. The zero error is an example of a systematic error, which is dealt
with later in this chapter.



It is also important that you become familiar with setting up apparatus. When instructions are given, the
only way to become confident is through practice. You may face a variety of tasks, from setting up a
pendulum system to measuring the angle at which a tilted bottle falls.

You should also learn to set up simple circuits from circuit diagrams. The most common error in building
circuits comes where components need to be connected in parallel. A good piece of advice here is to build
the main circuit first, and then add the components that need to be connected in parallel.



P1.3 Gathering evidence

When gathering evidence, you should take into account the range of results that you are going to obtain.
If you are investigating the extension of a spring with load, for loads of between 0 N and 20 N, you should
take a fair spread of readings throughout that range. For instance, six readings between 12 N and 20 N
would not be sensible because you are not investigating what happens with smaller loads. Equally, taking
three readings below 5 N and three more between 15 N and 20 N does not test what happens with
intermediate loads.

A sensible set of readings might be at 0 N, 4 N, 8 N, 12 N, 16 N and 20 N. This covers the whole range in
equal steps.

Question

1 You are investigating how the current through a resistor depends on its resistance when connected in
a circuit. You are given resistors of the following values:
500, 1009, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 500Q
You are asked to take measurements with just six of these resistors. Which six resistors would you
choose? Explain your choice.



P1.4 Precision, accuracy, errors and
uncertainties

Whenever you make a measurement, you are trying to find the true value of a quantity. This is the value
you would find if your measurement was perfect. However, no measurement can ever be perfect; there
will always be some uncertainty. Your equipment may be imperfect or your technique may be capable of
improvement. So, whenever you carry out practical work, you should think about two things:

* how the equipment or your technique could be improved to give better results, with less uncertainty
* how to present the uncertainty in your findings.

As you will see later in this chapter, both of these need to be reflected in the way you present your
findings.

We will first consider the precision of a measurement. The level of precision is high if you make several
measurements of a quantity and they are all very similar. A precise measurement, when repeated, will be
the same, or nearly so. However, if your measurements are spread widely around the average, they are
less precise. This can arise because of practical difficulties in making the measurements.

Precision is reflected in how the results are recorded. If a distance is quoted as ‘15 m’ then it implies that
it was only measured to the nearest metre, whereas if it is quoted as ‘15.0 m’ then it suggests that it was
measured to the nearest 0.1 m.

Take care not to confuse precision with accuracy. A measurement is described as ‘accurate’ if the value
obtained is close to the true value. Even if a measurement is precise, and always produces the same
result, it may not be accurate because every reading may have the same error. For example, you can
make very precise measurements of the diameter of a wire using a micrometer screw gauge to the
nearest 0.01 mm, but every reading may be inaccurate if the gauge has a zero error.

Figure P1.5 shows two attempts at making holes in the centre of a target. Imagine that the positions of
the holes represent readings, with the true value at the centre. On the left, the readings are close
together so we can say that they are precise. However, they are not accurate as the average is far from
the centre. In the second, the measurement can be said to be accurate as the average position of the
holes is close to the centre, but the readings are not precise as the holes are spread out.

Whenever you make a measurement, you should be aware of the uncertainty in the measurement. It will
often, but not always, be determined by the smallest division on the measuring instrument. On a metre
rule, which is graduated in millimetres, we should be able to read to the nearest half millimetre, but
beware! If we are measuring the length of a rod there are two readings to be taken, one at each end of
the rod. Each of these readings has an uncertainty of 0.5 mm, giving a total uncertainty of 1 mm.

Figure P1.5: The left-hand diagram represents readings that are precise but not accurate; the right-
hand diagram represents readings that are accurate but without precision.

The uncertainty will depend not only on the precision of the calibrations on the instrument you are using,
but also on your ability to observe and on errors introduced by less than perfect equipment or poor
technique in taking the observations. Here are some examples of where uncertainties might arise:

Systematic error - A spring on a force meter might, over time, become weaker so that the force meter
reads consistently high. Similarly, the magnet in an ammeter might, over the years, become weaker and
the needle may not move quite as far round the scale as might be expected. Parallax errors, described
earlier, may be another example of a systematic error if one always looks from the same angle, and not
directly from above, when taking a measurement. In principle, systematic errors can be corrected for by
recalibrating the instrument or by correcting the technique being used.

Zero error - The zero on a ruler might not be at the very beginning of the ruler. This will introduce a
fixed error into any reading unless it is allowed for. This is a type of systematic error.

Random errors - When a judgement has to be made by the observer, a measurement will sometimes be
above and sometimes below the true value. Random errors can be reduced by making multiple



measurements and averaging the results.

Good equipment and good technique will reduce the uncertainties introduced, but difficulties and
judgements in making observations will limit the precision of your measurements. Here are two examples
of how difficulties in observation will determine the uncertainty in your measurement.

Example 1: Using a stopwatch

Tambo has a digital stopwatch that measures to the nearest one-hundredth of a second. He is timing his
sister Nana in a 100 metre race (Figure P1.6). He shows her the stopwatch, which reads 11.87 s. She
records in her notebook the time 11.9 s. She explains to Tambo that he cannot possibly measure to the
nearest one-hundredth of a second as he has to judge both when the starting pistol was fired and the
exact moment at which she crossed the finishing line. To do this to any closer than the nearest one-tenth
of a second is impossible. In addition, sometimes he will press the button too early and sometimes too
late.

Figure P1.6: Uncertainty in timing using a stopwatch.

Example 2: Measuring displacement of a pendulum

Fatima is asked to measure the maximum displacement of a pendulum bob as it oscillates, as shown in
Figure P1.7. She uses a ruler calibrated in millimetres. She argues that she can measure the
displacement to the nearest millimetre. Joanne, however, correctly argues that she can only measure it to
the nearest two millimetres, as not only is there the uncertainty at either end (0.5 mm) but she also has to
judge precisely the point at which the bob is at its greatest displacement, which adds an extra millimetre
to the uncertainty.
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Figure P1.7: Displacement of a pendulum bob.

Questions
2 Look at Figure P1.5. Draw similar diagrams to represent:
a a target where the holes are both precise and accurate
b atarget where the holes are neither precise nor accurate.
3 The position of the holes in Figure P1.5 represents attempts at measuring the position of the centre of



the circle. Which one shows more random error and which shows more systematic error?



P1.5 Finding the value of an uncertainty

We have used the terms uncertainty and error; they are not quite the same thing. In general, an ‘error’ is
just a problem that causes the reading to be different from the true value (although a zero error can have
an actual value). The uncertainty, however, is an actual range of values around a measurement, within
which you expect the true value to lie. The uncertainty is an actual number with a unit.

For example, if you happen to know that the true value of a length is 21.0 cm and an ‘error’ or problem
causes the actual reading to be 21.5 cm, then, since the true value is 0.5 cm away from the measurement,
the uncertainty is £0.5 cm.

But how do you estimate the uncertainty in your reading without knowing the true value? Obviously, if a

reading is 21.5 cm and you know the true value is 21.0 cm, then the uncertainty in the reading is 0.5 cm.
However, you may still have to estimate the uncertainty in your reading without knowing the true value.

So how is this done?

You can find the uncertainty from whichever is the largest out of:

* the smallest division on the instrument used, or
* half the range of a number of readings of the measurement.

First, it should be understood that the uncertainty is only an estimate of the difference between the actual
reading and the true value. We should not feel too worried if the difference between a single
measurement and the true value is as much as twice the uncertainty. Because it is an estimate, the
uncertainty is likely to be given to only one significant figure. For example, we write the uncertainty as
0.5 cm and not 0.50 cm.

The uncertainty can be estimated in two ways.

Using the division on the scale - Look at the smallest division on the scale used for the reading. You
then have to decide whether you can read the scale to better than this smallest division. For example,
what is the uncertainty in the level of point B in Figure P1.2? The smallest division on the scale is 1 mm
but is it possible to measure to better than 1 mm? This will depend on the instrument being used and
whether the scale itself is accurate. In Figure P1.2, the width of the line itself is quite small but there may
be some parallax error that would lead you to think that 0.5 mm or 1 mm is a reasonable uncertainty. In
general, the position of a mark on a ruler can generally be measured to an uncertainty of 0.5 mm. In
Figure P1.8, the smallest division on the scale is 20 g. Can you read more accurately than this? In this
case, it is doubtful that every marking on the scale is accurate and so 20 g would be reasonable as the
uncertainty.
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Figure P1.8: The scales on a lever-arm balance.

You need to think carefully about the smallest division you can read on any scale. As another example,
look at a protractor. The smallest division is probably 1° but it is unlikely you can use a protractor to
measure an angle to better than +0.5° with your eye.

Repeating the readings - Repeat the reading several times. The uncertainty can then be taken as half
of the range of the values obtained; in other words, the smallest reading is subtracted from the largest
and the result is halved. This method deals with random errors made in the readings but does not account
for systematic errors. This method should always be tried, wherever possible, because it may reveal
random errors and gives an easy way to estimate the uncertainty. However, if the repeated readings are
all the same, do not think that the uncertainty is zero. The uncertainty can never be less than the value
you obtained by looking at the smallest scale division.

Which method should you actually use to estimate the uncertainty? If possible, readings should be



repeated and the second method used. But if all the readings are the same, you have to try both methods!

The uncertainty in using a stopwatch is something of a special case as you may not be able to repeat the
measurement. Usually, the smallest division on a stopwatch is 0.01 s, so can you measure a time interval
with this uncertainty? You may know that your own reaction time is larger than this and is likely to be at
least 0.1 s. The stopwatch is recording the time when you press the switch but this is not pressed at
exactly the correct moment. If you do not repeat the reading then the uncertainty is likely to be at least
0.1 s, as shown in Figure P1.7. If several people take the reading at the same time, you are likely to see
that 0.01 s is far too small to be the uncertainty.

Even using a digital meter is not without difficulties. For example, if a digital ammeter reads 0.35 A, then,
without any more information, the uncertainty is +£0.01 A, the smallest digit on the meter. But if you look

at the handbook for the ammeter, you may well find that the uncertainty is =0.02 or 0.03 A (although you
cannot be expected to know this).

WORKED EXAMPLE

1 Alength is measured five times with a ruler whose smallest division is 0.1 cm and the readings
obtained, in cm, are: 22.9, 22.7, 22.9, 23.0, 23.1. What is the reading obtained and the uncertainty?
Step 1 Find the average by adding the values and dividing by the number of values:

22.9422.7+22.94+23.0+23.1 __
= = 2292 cm

This is written to four significant figures. At this stage, you are not sure how many figures
to write in the answer.

Step 2 The maximum value is 23.1 and the minimum value is 22.7. Use these values to find half the
range.

half the range = % =0.2cm

Step 3 Check that the uncertainty calculated in Step 2 is larger than the smallest division you can
read on the scale.

Step 4 Write down the average value, the uncertainty to a reasonable number of significant figures
and the unit. Obviously, the last digit in 22.92 is meaningless as it is much smaller than the
uncertainty; it should not be written down.

The final value is (22.9 = 0.2) cm.

You do not usually write down the final value of the answer to a greater number of decimal
places than the uncertainty. Uncertainties are usually quoted to one or perhaps two
significant figures.

Questions

4 Figure P1.8 shows a lever-arm balance, initially with no mass in the pan and then with a standard 200
g mass in the pan.

Explain what types of error might arise in using this equipment.

5 Estimate the uncertainty when a student measures the length of a room using a steel tape measure
calibrated in millimetres.

6 Estimate the uncertainty when a girl measures the temperature of a bath of water using the
thermometer in Figure P1.9.
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Figure P1.9: For Question 6.

7 A student is asked to measure the wavelength of waves on a ripple tank using a metre rule that is
graduated in millimetres. Estimate the uncertainty in his measurement.

8 Estimate the uncertainty when a student attempts to measure the time for a single swing of a
pendulum.

9 What is the average value and uncertainty in the following sets of readings? All are quoted to be
consistent with the smallest scale division used.

a 20.6,20.8
b 20, 30, 36
c 06,1.0,08,1.2



d 20.5, 20.5.



P1.6 Percentage uncertainty

The uncertainties we have found so far are sometimes called absolute uncertainties, but percentage
uncertainties are also very useful.

The percentage uncertainty expresses the absolute uncertainty as a fraction of the measured value and is
found by dividing the uncertainty by the measured value and multiplying by 100%.

. uncertaint;
percentage uncertainty = m x 100 %

For example, suppose a student times a single swing of a pendulum. The measured time is 1.4 s and the
estimated uncertainty is 0.2 s. Then we have:

uncertainty

percentage uncertainty = ———— x100%

02
= 32 x100%
= 14%

This gives a percentage uncertainty of 14%. We can show our measurement in two ways:
e with absolute uncertainty: time for a single swing =1.4s + 0.2 s
e with percentage uncertainty: time for a single swing = 1.4 s + 14%

(Note that the absolute uncertainty has a unit whereas the percentage uncertainty is a fraction, shown
with a % sign.)

A percentage uncertainty of 14% is very high. This could be reduced by measuring the time for 20 swings.
In doing so, the absolute uncertainty remains 0.2 s (it is the uncertainty in starting and stopping the

stopwatch that is the important thing here, not the accuracy of the stopwatch itself), but the total time
recorded might now be 28.4 s.

percentage uncertainty = 2%% x 100%
= 0.7%

So measuring 20 oscillations rather than just one reduces the percentage uncertainty to less than 1%.
The time for one swing is now calculated by dividing the total time by 20, giving 1.42 s. Note that, with a
smaller uncertainty, we can give the result to two decimal places. The percentage uncertainty remains at
0.7%:

time for a single swing = 1.42s + 0.7%

Questions

10 The depth of water in a bottle is measured as 24.3 cm, with an uncertainty of 0.2 cm. (This could be
written as (24.3 + 0.2) cm.) Calculate the percentage uncertainty in this measurement.

11 The angular amplitude of a pendulum is measured as (35 = 2)°.
a Calculate the percentage uncertainty in the measurement of this angle.

b The protractor used in this measurement was calibrated in degrees. Suggest why the user only
feels confident to give the reading to within 2°.

12 A student measures the potential difference across a battery as 12.4 V and states that his
measurement has a percentage uncertainty of 2%. Calculate the absolute uncertainty in his
measurement.



P1.7 Recording results

It is important that you develop the skill of recording results in a clear and concise manner.

Generally, numerical results will be recorded in a table. The table should be neatly drawn using a ruler
and each heading in the table should include both the quantity being measured and the unit it is
measured in.

Each column of a table must be labelled with a quantity / unit, and, if a
reading be given to the precision of the instrument, usually to the same
number of decimal places. Calculated quantities may have one more
significant figure than the readings used.

Table P1.1 shows how a table may be laid out. The measured quantities are the length of the wire and the
current though it; both have their units included. Similarly, the calculated quantity, ——, is included and

current ’
this too has a unit, A~1.

When recording your results, you need to think once more about the precision to which the quantities are
measured. In the example in Table P1.1, the length of the wire might be measured to the nearest
millimetre and the current might be measured to the nearest milliampere.

Note how ‘.0’ is included in the second result for the length of the wire, to show that the measurement is
to the nearest millimetre, not the nearest centimetre. Similarly the zero after the 0.35 shows that it is

measured to the nearest milliampere or —— of an ampere.

The third column is calculated and should show the same number of significant figures, or one more than
the quantity (or quantities) it is calculated from. In this example, the current is measured to three
significant figures so the inverse of the current is calculated to three significant figures.

Length of wire / cm Current / A —L Al
current
10.3 0.682 1.47
19.0 0.350 2.86

Table P1.1: A typical results table.

Question

13 A ball is allowed to roll down a ramp from different starting points. Figure P1.10 shows the apparatus
used. The ramp is placed at a fixed height above the floor. You are asked to measure the vertical
height h of the starting point above the bottom of the ramp and the horizontal distance d the ball
travels after it leaves the ramp.

*_balls flight path

Figure P1.10: For Question 13.

You are also asked to find the square of the horizontal distance the ball travels after it leaves the
ramp.

Table P1.2 shows the raw results for the experiment. Copy and complete the table.

h/cm d/cm d2/




1.0 18.0
2.5 28.4
4.0 35.8
5.5 41.6
7.0 47.3
9.0 53.6

Table P1.2: For Question 13.




P1.8 Analysing results

When you have obtained your results, the next thing to do is to analyse them. Very often this will be done
by plotting a graph.

You may be asked to plot a graph in a particular way, however, the general rule is that the variable you
control or alter (the independent variable) is plotted on the x-axis and the variable that changes as a
result (the dependent variable) is plotted on the y-axis.

In the example in Table P1.1, the length of the wire would be plotted on the x-axis and the current (or
—) would be plotted on the y-axis.

current

You should label your axes with both the quantities you are using and their units. You should then choose
your scales to use as much of the graph paper as possible. However, you also need to keep the scales
simple. Never choose scales that are multiples of 3, 7, 11 or 13. Try and stick to scales that are simple
multiples of 1, 2 or 5.

Plot your points carefully using small crosses; dots tend to disappear into the page and larger dots
become blobs, the centre of which is difficult to ascertain.

Many, but not all, graphs you meet will be straight lines. The points may not all lie exactly on the straight
line and it is your job to choose the best fit line. Choosing this line is a skill that you will develop through
the experience of doing practical work.

Generally, there should be equal points either side of the line (but not three on one side at one end and
three on the other at the other end). Sometimes, all the points, bar one, lie on the line. The point not on
the line is often referred to as an anomalous point, and it should be checked, if possible. If it still appears
to be off the line it might be best to ignore it and use the remaining points to give the best line. It is best
to mark it clearly as ‘anomalous’.

In Figure P1.11, the line chosen on the first graph is too shallow. By swinging it round so that it is steeper,
it goes closer to more points and they are more evenly distributed above and below the line.
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Deductions from graphs

There are two major points of information that can be obtained from straight-line graphs: the gradient
and the intercept with the y-axis. When measuring the gradient, a triangle should drawn, as in Figure
P1.12, using at least half of the line that has been drawn.

Figure P1.11
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In the mathematical equation y = mx + ¢, m is equal to the gradient of the graph and c is the intercept
with the y-axis. If ¢ is equal to zero, the graph passes through the origin, the equation becomes y = mx
and we can say that y is proportional to x.



changein y (or Ay)
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Figure P1.12

Question

14 a Use your results from Question 13 to plot a graph of the square of the horizontal distance d? (on
the y-axis) against the height h (on the x-axis). Draw the best fit line.

b Determine the gradient of the line on your graph and the intercept with the y-axis. Remember,
both the gradient and the intercept have units; these should be included in your answer.

Curves and tangents

You also need to develop the skill of drawing smooth curves through a set of points, and drawing tangents
to those points. When drawing curves, you need to draw a single smooth curve, without any jerks or
feathering. As with a straight line, not every point will lie precisely on the curve, and there should be a
balance of points on either side.

In the first graph of Figure P1.13, the student has joined each of the points using a series of straight lines.
This should never be done. The second graph is much better, although there is some feathering at the left-
hand side, as two lines can be seen. The third graph shows a well-drawn curve.
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Figure P1.13: For Question 14.




P1.9 Testing a relationship

The readings from an experiment are often used to test a relationship between two quantities, typically
whether two quantities are proportional or inversely proportional.

You should know that if two quantities y and x are directly proportional:
* the formula that relates them is y = kx, where k is a constant

» if a graph is plotted of y against x then the graph is a straight line through the origin and the gradient
is the value of k.

If the two quantities are inversely proportional then y = £ and a graph of y against  gives a straight line
through the origin.

These statements can be used as a basis for a test. If a graph of y against x is a straight line through the
origin, then y and x are directly proportional. If you know the values of y and x for two points, you can
then calculate two values of k with the formula y = £ and see whether these two values of k are actually
the same. But what if the points are not exactly on a straight line or the two values of k are not exactly the
same - is the relationship actually false or is it just that errors caused large uncertainties in the readings?

Later in this chapter, we will look at how to combine the uncertainties in the values for y and x to find an
uncertainty for k. However, you can use a simple check to see whether the difference in the two values of
k may be due to the uncertainties in the readings. For example, if you found that the two values of k differ
by 2% but the uncertainties in the readings of y and x are 5%, then you cannot say that the relationship is
proved false. Indeed, you are able to say that the readings are consistent with the relationship.

You should first write down a criterion for checking whether the values of k are the same. This criterion is
just a simple rule you can invent for yourself and use to compare the two values of k with the uncertainties
in the readings. If the criterion is obeyed you can then write down that the readings are consistent with
the relationship.

KEY IDEA

Write down a criterion.
Calculate the percentage difference between two values of the constant.

Compare the percentage difference with the percentage uncertainty in
one of the variables.

Write a conclusion as to whether the criterion is obeyed or not.

Criterion 1

A simple approach is to assume that the percentage uncertainty in the value of k is about equal to the
percentage uncertainty in either x or y; choose the larger percentage uncertainty of x or y.

You first look at the percentage uncertainty in both x and y and decide which is bigger. Let us assume that
the larger percentage uncertainty is in x. Your stated criterion is then that ‘if the difference in the
percentage uncertainty in the two values of k is less than the percentage uncertainty in x, then the
readings are consistent with the relationship’.

If the percentage difference in k values is less than the percentage uncertainty in x (or y), the readings are
consistent with the relationship.

If the percentage difference in k values is less than the percentage
uncertainty in x (or y), the readings are consistent with the relationship.

Criterion 2

Another criterion is to state that the k values should be the same within 10% or 20%, depending on the
experiment and the uncertainty that you think sensible. It is helpful if the figure of 10% or 20% is related
to some uncertainty in the actual experiment.

Whatever criterion you use, it should be stated clearly and a clear conclusion given. The procedure to
check whether two values of k are reasonably constant is as follows:

* Calculate two values of the constant k. The number of significant figures chosen when writing down
these values should be equal to the least number of significant figures in the data used. If you are
asked to justify the number of significant figures you give for your value of k, state the number of
significant figures that x and y were measured to and that you will choose the smallest. Do not quote



your values of k to one significant figure to make them look equal when x and y were measured to two
significant figures.

Calculate the percentage difference in the two calculated values of k. It is worthwhile using one more
significant figure in each actual value of k than is completely justified in this calculation.

Compare the percentage difference in the two values of k with your clearly stated criterion. You could
compare your percentage difference in k values with the larger of the percentage differences in x and
y.

WORKED EXAMPLES

1

A student investigates the depth D of a crater made when ball-bearings of different diameters d are
dropped into sand. He drops two ball bearings from the same height and measures the depth of the
craters using a 30 cm ruler. The results are shown in Table P1.3.

Diameter of ball bearing d / Depth of the crater D / mm D/d
mm

5.42 + 0.01 36 = 2 6.64

3.39 £ 0.01 21 =2 6.19

Table P1.3: For Worked example 2.

It is suggested that the depth D of the crater is directly proportional to the diameter d of the ball-
bearing, that is:

D=kdor L =k
Do the readings support this hypothesis?

Step 1 Calculate the values of k = % These values are shown in the third column in Table P1.3,

although they should only be given to two significant figures as values of D are given to two
significant figures and values of d to three significant figures. The more precise values for k
are to be used in the next step.

Step 2 Calculate the percentage difference in the k values. The percentage difference is:
w8 % 100% = 7.2%
So the k values differ by 7% of the smaller value.

Step 3 State a criterion and check it.

‘My criterion is that, if the hypothesis is true, then the percentage difference in the k values
will be less than the percentage uncertainty in D. I chose D as it obviously has the higher
percentage uncertainty.’

The uncertainty in the smaller measurement of D can be calculated as:

uncertainty in D = 2 x 100% = 9.5%

The percentage difference in the k values is less than the uncertainty in the experimental
results; therefore, the experiment is consistent with the hypothesis.

Of course, we cannot say for sure that the hypothesis is correct. To do that, we would need
to greatly reduce the percentage uncertainties.

A student obtains data shown in Table P1.4.

x / cm d/cm
2.0 3.0
3.5 8.0

Table P1.4: For Worked example 3.

The first reading of x was found to have an uncertainty of £0.1. Do the results show that d is
proportional to x?

Step 1 Calculate the ratio of £ in both cases:
d _ d _
(£), =150 (4),=2.29
Step 2 Calculate how close to each other the two ratios are: 2.29 — 1.50 = 0.79

So the two values of (£) are 22 = 53% different.



Step 3 Compare the values and write a conclusion.

The uncertainty in the first value of x is 5% and, since the percentage difference between
the ratios of 53% is much greater, the evidence does not support the suggested relationship.

Questions

15 A student obtains the following data for two variables T and m (Table P1.5).
T/s m / kg
4.6 0.90
6.3 1.20

Table P1.5: Data for Question 15.

The first value of T has an uncertainty of 0.2 s. Do the results show that T is proportional to m?

16 A student obtains the following values of two variables r and t (Table P1.6).

r/cm t/s
6.2 4.6
12.0 6.0

Table P1.6: Data for Question 16.

The first value of r has an uncertainty of 0.2 cm, which is much greater than the percentage

uncertainty in t. Do the results show that t2 is proportional to r?



P1.10 Combining uncertainties

When quantities are combined, for example, multiplied or divided, what is the uncertainty in the final
result?

If quantities are added or subtracted, add absolute uncertainties.
If quantities are multiplied or divided, add percentage uncertainties.

Suppose that quantity A = 1.0 = 0.1 and that B = 2.0 = 0.2, so that the value of A + B is 3.0. The
maximum likely value of A + B, taking into account the uncertainties, is 3.3 and the minimum likely value
is 2.7. You can see that the combined uncertainty is £0.3, so A + B = 3.0 = 0.3. Similarly B—A =1.0 =
0.3.

When quantities are added or subtracted, their absolute uncertainties are added. A simple example is
measuring the length of a stick using a millimetre scale. There is likely to be an uncertainty of 0.5 mm at
both ends, giving a total uncertainty of 1.0 mm.

When quantities are multiplied or divided, combining uncertainties is a little more complex. To find the
combined uncertainty in this case, we add the percentage uncertainties of the two quantities to find the
total percentage uncertainty.

Remember, you always add uncertainties; never subtract.

Where quantities are:

* added or subtracted, then add absolute uncertainties

* multiplied or divided, then add percentage or fractional uncertainties.

WORKED EXAMPLES

3 The potential difference across a resistor is measured as (6.0 = 0.2) V, while the current is
measured as (2.4 = 0.1) A.
Calculate the resistance of the resistor and the absolute uncertainty in its measurement.

Step 1 Find the percentage uncertainty in each of the quantities:

percentage uncertainty in p.d. = % x 100%
= 3.3%

percentage uncertainty in current = % x 100%
= 42%

Step 2 Add the percentage uncertainties. Sum of uncertainties:
(3.3+4.2)% =7.5%
Step 3 Calculate the resistance value and find the absolute uncertainty:

R =

e~

N
'Qnua'c:
o)

7.5% of 2.5 =0.1875 = 0.2 Q
The resistance of the resistor is 2.5 + 0.2 Q.

When you calculate the uncertainty in the square of a quantity, since this is an example of
multiplication, you should double the percentage uncertainty. For example, if A = (2.0 =
0.2) cm, then A has a percentage uncertainty of 10% so A2 = 4.0 cm? + 20%; or giving the
absolute uncertainty, A% = (4.0 + 0.8) cm?2.

Questions
17 You measure the following quantities:
A=(1.0x04)m



18

B=
C=
D=

(2.0 £ 0.2) m
(2.0 +0.5) ms~!
(0.20 = 0.01) s

Calculate the result and its uncertainty for each of the following expressions. You may express your
uncertainty either as an absolute value or as a percentage.

- 0 o0 0w

g

A+ B
B-A
CxD
B
D
A2
2 XA

the square root of (A x B). (Recall that the square root of x can be written as X))

A rifle bullet is photographed in flight using two flashes of light separated by a time interval of (1.00
+ 0.02) ms. The first image of the bullet on the photograph appears to be at a position of (22.5 = 0.5)
cm on a scale underneath the flight path. The position of the second image is (37.5 = 0.7) cm on the
same scale. Find the speed of the bullet and its absolute uncertainty.



P1.11 Identifying limitations in procedures and
suggesting improvements

No experiment is perfect and the ability to see weaknesses in the experimental setup and the techniques
used is an important skill. You should also take the opportunity to think of ways to improve the
experimental technique, thereby reducing the overall percentage uncertainty.

In this topic, we will look at five experiments and discuss problems that might arise and the
improvements that might be made to overcome them. It will help if you try out some of the experiments
yourself so that you get a feel for the methods described. The table for each experiment is a summary of
ideas that you might use in your answer.

Experiment 1: Ball-bearings and craters

In Worked example 2, the student dropped a ball-bearing of diameter d into sand and measured the depth
D of the crater produced. He dropped two ball-bearings of different diameters from the same height and
measured the depth of the crater using a 30 cm ruler. Table P1.7 suggests some of the problems with the
simple method used, together with some improvements.

Suggestion Problem Improvement

1 ‘Two results are not enough to draw a ‘Take more results and plot a graph of D
valid conclusion.’ against d.’

2 ‘The ruler is too wide to measure the ‘Use a knitting needle and mark the
depth of the crater.’ sand level on the needle and then

measure with a ruler.’

3 ‘There may be a parallax error when ‘Keep the eye parallel to the horizontal
measuring the top level of the crater.’ level of the sand, or use a stiff card.’

4 ‘It is difficult to release the ball-bearing | ‘Use an electromagnet to release the
without giving it a sideways velocity;, ball.’

leading to a distorted crater.’

5 ‘The crater lip is of varying height.’ ‘Always measure to the highest point.’

Table P1.7: Suggestions for improving Experiment 1.

It is worth making some points regarding these suggestions.

1 This is a simple idea, but it is important to explain how the extra results are to be used. In this case, a
graph is suggested - alternatively the ratio g could be calculated for each set of readings.

2 The problem is clearly explained. It is not enough to just say that the depth is difficult to measure.

3 It is not enough to just say ‘parallax errors’. We need to be specific as to where they might occur.
Likewise, make sure you make it clear where you look from when you suggest a cure.

4 There is no evidence that this will affect the crater depth, but it is a point worthy of consideration.

5 An interesting point: does the crater depth include the lip or is it just to the horizontal sand surface?
Consistency in measurement is what is needed here.

Experiment 2: Timing with a stopwatch

Many years ago, Galileo suggested that heavy and light objects take the same time to fall to the ground
from the same height, as illustrated in Figure P1.14. Imagine that you want to test this hypothesis.



old idea

Galileo’s idea

Figure P1.14: It was believed that Galileo dropped two different masses from the top of the Leaning
Tower of Pisa to prove his idea. But people now think it probably didn’t happen. He just did a ‘thought
experiment’.

This is an experiment you can do yourself with two objects and a stopwatch, or even a digital wrist watch
or a cell phone with a timing app. Drop two different objects, for example two stones, and measure the
time they take to fall the same distance to the ground.

Of course, the times you obtain are likely to be different. Does this prove Galileo wrong? You can test the
relationship and establish whether your readings are consistent with his hypothesis. However, if you
improve the experiment and reduce the uncertainties, the conclusion will be much more useful.

When you consider improving an experiment, first consider any practical difficulties and possible sources
of inaccuracy. Write them down in detail. Do not just write, for example, ‘reaction time’ or ‘parallax error’.
It is always a good idea to start with the idea that more readings need to be taken, possibly over a greater

range (for example, in this case, if the masses of the stones were almost equal). Table P1.8 gives other

possibilities.

Problem

Improvement

‘Taking readings for just two
masses was not enough.’

‘T should use a great range of different masses and plot a graph of
the average time to fall to the ground against the mass of the
object.’

‘It was difficult to start the
stopwatch at the same instant that
I dropped the stone and to stop it
exactly as it hit the ground. I may
have been late because of my
reaction time.’

‘Film the fall of each stone with a video camera which has a timer
in the background. When the video is played back, frame by frame,
I will see the time when the ball hits the ground on the timer.

‘(Alternatively, you can use light gates connected to a timer to
measure the time electronically. You should draw a diagram,
explaining that the timer starts when the first light gate is broken
and stops when the second is broken.)

‘My hand was not steady and so I
may not have dropped the stones
from exactly the same height each
time.’

‘Use iron objects which hang from
an electromagnet. When the
current in the electromagnet is
switched off, the object falls.” (A

electromagnet
holding iron ball

gy’

diagram would help - see Figure
P15) line of sight
‘The heavier stone was larger in ‘Clamp a metre rule vertically and stk siiare
size and it was important that the | start the bottom of each stone at Fo ki _
bottom of each stone started at the | exactly the top of the ruler each rule vertical | 3
same height. There may have been | time. To avoid parallax error, I will E
parallax error.’ make sure my line of sight is 3
horizontal, at right angles to the A1 3
rule.’ (A diagram will show this
clearly - see Figure P1.15.) Figure P1.15: Using an
electromagnet to release

iron objects. The line of sight
is clearly shown.

‘The times that I measured were
very short - not much greater than

‘Increase the distance of fall so that the times are larger. This will
make the uncertainty in each time measurement smaller in




my reaction time - so reaction time | proportion to the time being measured.’
had a great effect.’

Table P1.8: Suggestions for improving Experiment 2.

Question

19 Use a stopwatch and a metre rule to measure the average speed as an object falls from a table to the
ground. What are the difficulties and how might they be reduced? Some of the suggestions will be the
same as those in Experiment 2, but you should also consider difficulties in measuring the distance to
the ground and how they can be avoided. Remember, rules have battered ends and the ends may not
be at 0 and 100 cm.

Experiment 3: Timing oscillations
In physics, the study of oscillations is of great importance. Indeed, the observation of a pendulum led
Galileo to study time intervals and allowed pendulum clocks to be developed.

One skill you will need to develop is finding the time for an oscillation. Figure P1.16 shows a simple
pendulum and one complete oscillation. The pendulum is just a small weight, the bob, which hangs on a
string.

—

A, C

& B
pendulum bob e

\\‘——//
\-\_\\_

Figure P1.16: One complete oscillation is either from A to C and then back to A, or from B to C then
back to B, then to A and back to B, as shown.

Figure P1.16 shows that one complete oscillation can be measured in two ways. Which way is better? In
fact, the second way is better. This is because it is difficult to judge exactly when the pendulum bob is at
the end of its swing. It is easier to start timing when the bob is moving quickly past a point; this happens
in the middle of the swing. To time from the middle of the swing, you should use a fiducial mark. This can
be a line on the bench underneath the bob at the centre of the swing, or it can be another object in the
laboratory that appears to be in line with the bob when it hangs stationary, as seen from where you are
standing. As long as you do not move your position, every time the bob passes this point it passes the
centre.

Another way to reduce the uncertainty in the time for one oscillation is to time more than one swing, as
explained in the topic on percentage uncertainty.

A simple practical task is to test the hypothesis that the time for one oscillation T is related to the length [
of a simple pendulum by the formula T2 = kI, where k is a constant.

What difficulties would you face and what are possible improvements? Table P1.9 gives some possibilities.

Problem Improvement

‘Taking readings for just two | ‘Use more than two lengths and plot a graph of the average time

lengths was not enough.’ squared against the length of the string.’
‘It was difficult to judge the ‘Use a fiducial mark at the centre of the oscillation as the position to
end of the swing.’ start and stop the stopwatch.’

‘Use an electronic timer placed at the centre of the oscillation to



measure the time.’

‘Make a video of the oscillation with a timer in the background and play
it back frame by frame.’

‘The oscillations died away too
quickly.’

‘Use a heavier mass which swings longer.’

‘The times were too small to
measure accurately, as my
reaction time was a significant]
fraction of the total time.’

‘Use longer strings.’
‘Time 20 rather than 10 oscillations.’

‘It was difficult to measure the
length to the centre of gravity
of the weight accurately.’

‘Use a longer string so any errors are less important.’

‘Measure the length to the top of the weight and use a micrometer to
measure the diameter of the bob and add on half the diameter to the

length of the string.’

Table P1.9: Suggestions for improving Experiment 3.

Question

20 Hang a mass from a spring or from a rubber band. Use a stopwatch to time the mass as it oscillates
up and down. Measure the time for just one oscillation, the time for 10 oscillations and the time for 20
oscillations. Repeat each reading several times. Use your readings to find the time for one complete
oscillation and the uncertainty in each time. Draw up a table to show the problems of such
measurements and how to reduce them.

Experiment 4: Using force meters

You need to be able to read instruments, estimating the uncertainty, looking for sources of error and
trying to improve their use. One such instrument is a force meter or newton-meter, shown in Figure
P1.17.

In this experiment, the block is pulled using the force meter to find the force F needed to make a block
just start to move. An extra mass is added on top of the block to see whether the relationship F = km is
obeyed, where m is the total mass of the block and k is a constant.

weight newton-meter

block

Figure P1.17: A newton-meter, just before it pulls a block along the bench. Look closely at Figure
P1.17. When reading the meter, the uncertainty is the smallest scale division on the meter, unless one
can reasonably read between the markings. This is difficult and so an uncertainty of 0.5 N, the smallest
scale division, is reasonable.

Another problem in using the meter is that it reads less than zero before it is pulled. It needs a small
force to bring the meter to zero. This is a zero error and all the actual readings will be too large by the
same amount. This is probably because the meter was adjusted to read zero when hanging vertically and
it is now being used horizontally.

Fortunately, the meter can be adjusted to read zero before starting to pull.

Table P1.10 describes the problems that may be encountered with this experiment, together with
suggested improvements.

Problem Improvement

‘Use more than two masses and plot a graph of the force against the
mass.’

‘Taking readings for just two
masses was not enough.’

‘It was difficult to zero the
newton-meter used
horizontally.’

‘Use a force sensor and computer.’

‘Use a pulley and string to connect a tray to the block. Then tip sand
onto a tray until the block starts to move. The weight of the sand and




tray is then the force.’

‘The reading of F was very ‘Use heavier masses on top of the block.’
low on the scale and gave a
large percentage uncertainty.’

‘The block starts to move ‘Video the experiment and play back frame by frame to see the largest
suddenly and it is difficult to | force.’

take the reading as this ‘Use a force sensor and computer.’

happens.

‘Different parts of the board ‘Mark round the block with a pencil at the start and put it back in the
are rougher than others.’ same place each time.’

Table P1.10: Suggestions for improving Experiment 4.

Question

21 If you grip the bulb of a thermometer gently in your fingers, the reading rises to a new value. The
reading will be different depending on whether you cover the bulb entirely or only partially with your
fingers.

A laboratory thermometer can be used to measure the increase in temperature.

a Suggest a value for the uncertainty in such a reading. (You may need to look at some different
thermometers.)

b Describe how you would test whether the temperature rise is proportional to the area of the bulb
covered by your fingers You can take the surface area of the bulb to be 1 cm? and when you cover
half of the bulb the area covered is 0.5 cm?. The exact value of the surface area is not important;
just the ratio is important.

¢ Suggest difficulties with this experiment, and how it might be improved. One problem with a
thermometer is that it takes time for the reading to rise. What can you do about this?

Experiment 5: Electrical measurements

Electrical experiments have their own problems. Figure P1.18 shows an apparatus used to test the
hypothesis that the resistance R of a wire is related to its length I by the formula R = ki, where k is a
constant. The current is kept constant and the voltmeter reading is taken at two different values of I, for I
= 0.30 m and 0.50 m.

What problems are likely to arise when using this apparatus? Table P1.11 identifies some possible
problems with this experiment, and some suggestions for improvement.
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Figure P1.18: Apparatus used to check the hypothesis R = kl.

Without looking at your textbook, produce a list of the problems and improvements that can be
encountered in mechanics experiments, light experiments and electrical experiments.

Check your list against someone else’s list.




Problem

Improvement

‘Taking readings for just two
lengths was not enough.’

‘Use more than two lengths and plot a graph of the voltmeter reading
against the length.’

‘Calculate more than just two values of k.’

‘Difficult to measure the
length of the wire as the clips
have width and I don’t know
where inside they grip the
wire.’

‘Use narrower clips.’
‘Solder the contacts onto the wire.’

‘The scale is not sensitive
enough and can only measure
to 0.05 W’

‘Use a voltmeter that reads to 0.01 V.
‘Use a digital voltmeter.’

‘The values of voltage are
small, particularly at 0.30 m.’

‘Use a larger current so that when [ = 0.50 m the voltmeter reading is at
the top of the scale.’

‘The voltmeter reading
fluctuates because of contact
resistance.’

‘Clean the wires with wire wool first.’

‘Other factors may have
changed the resistance; for
example, the temperature may
have increased because of the
current.’

‘Wait a long time until the wire has reached a constant temperature.’
‘Use smaller currents, but with a more sensitive voltmeter.’

Table P1.11: Suggestions for improving Experiment 5.




SUMMARY

A precise reading is one in which there is very little spread about the mean value.

The uncertainty in a reading is an estimate of the difference between the reading and true value of
the quantity being measured.

A systematic error cause readings to differ from the true value by a consistent amount each time the
reading is made.

Random errors cause readings to vary around the mean value in an unpredictable way from one
reading to another.

A zero error is caused when an instrument gives a non-zero reading when the true value of the
quantity is zero.

Find the uncertainty from the largest of the smallest division on the instrument used or half the range
of a number of readings of the same measurement.

Each column of a table must be labelled with a quantity / unit, and, if a reading be given to the
precision of the instrument, usually to the same number of decimal places. Calculated quantities may
have one more significant figure than the readings used.

The independent variable is the one that the experimenter alters or selects.

The dependent variable is the quantity that changes as a result of the independent variable being
altered by the experimenter.

change in y

gradlent = change in z

Use a large triangle to show the values used in calculating the gradient.

In testing a relationship, write down a criterion. Calculate the percentage difference between two
values of the constant. Compare the percentage difference with the percentage uncertainty in one of
the variables and write a conclusion as to whether the criterion is obeyed or not

If quantities are added or subtracted, then add absolute uncertainties. If quantities are multiplied or
divided, add percentage uncertainties.

A problem is a difficulty you experience during the experiment.

An improvement is a suggestion that will reduce the problem. You should have experience of a range
of these problems and improvements. For more details, consult the Practical Workbook.




EXAM-STYLE QUESTIONS

1 Quantity P has a fractional uncertainty p. Quantity Q has a fractional
uncertainty q.

What is the fractional uncertainty in Qp—z? [11
A p-g¢q
B p+q
C 2p-3¢q
D 2p+ 3¢
2 The p.d. V across a wire of length [ is given by the formula V' = i;’l where d is

the diameter of the wire, p is the resistivity and there is a current I in the wire.
Which quantity provides the largest contribution to the percentage uncertainty

in V? [11
Quantity Value of quantity Absolute
uncertainty
A 1/cm 250 +10
B d/mm 1.4 +0.1
C p/Qm 1.5 x 1078 +0.2 x 1078
D I/A 2.0 +0.2

Table P1.12

3 What is the uncertainty in the following sets of readings? All of them are
written down to the smallest division on the instrument used in their

measurement.
a 24.6,24.9, 30.2, 23.6 cm [1]
b 2.66,2.73,3.02s [1]
c 24.0,24.0,24.0¢g [1]
[Total: 3]
4 Electrical experiments usually involve the reading of meters such as the
voltmeters shown.
Figure P1.19
a What is the reading shown by each voltmeter, and the uncertainty in each
reading? [2]
b The voltmeters show the readings obtained when they were connected
across two wires that were identical apart from their different lengths. The
current in each wire was 0.500 A and the length I of the wire was 30.0 cm
in the right diagram and 50.0 cm in the left diagram.
Use the scale readings to test the hypothesis that the resistance R of the
wire is proportional to length I. Consider the effect of the uncertainties on
your conclusion. [4]
[Total: 6]

5 This apparatus can be used to test the hypothesis that T, the time taken for a



ball to roll down a plane from rest, is related to the distance s by the formula
T2 = ks, where k is a constant.

Figure P1.20

The ball is timed using a stopwatch over two different values of s.

Suggest problems with the experiment and how they might be overcome. You
should consider problems in measuring the distance as well as the time. Also
note what happens to the ball; it may not roll in the way that you expect.

Questions 6-8 are designed to illustrate some aspects of practical questions.
They are not formal practical questions as, ideally, you should perform the
experiment yourself and take some readings. This helps you to see the
problems.

An experiment explores the relationship between the period of a vibrating
spring and the mass m in a pan holder. The student is instructed to set up the
apparatus as shown here, with a mass of 200 g in the pan.

%Spring

/"/ \\.\ __mass
s
" panto hold
masses

Figure P1.21

The student is then told to move the pan downwards by approximately 1 cm
and to release it so that it vibrates in a vertical direction.

The student is asked to record the time taken for 20 oscillations of the spring,
and then to repeat the procedure, using masses between 20 g and 200 g until
She has six sets of readings. Columns are provided in the table for v/m and T,
the period of the pendulum.

This table shows the readings taken by a student with the different masses.

Mass / g Time for 20 vm T
oscillations / s
20 12.2
50 15.0
100 18.7
150 21.8
200 24.5

190 24.0

(8]



Table P1.13

a Copy the table and include values for /m and T. [21
b Plot a graph of T on the y-axis against 4/m on the x-axis. Draw the straight
line of best fit. [4]
¢ Determine the gradient and y-intercept of this line. [2]
d The quantities T and m are related by the equation:
T=C+ky/m
where C and k are constants.
Find the values of the two constants C and k. appropriate units. [2]
[Total: 10]
7 A student releases a toy car to roll down a ramp, as shown.
.'ll
rr‘\- i .
g |
' i : l
d =|
| 1
1 i
77
Figure P1.22
The student measures the distance [ from the middle of the car as it is released
to the bottom of the ramp and the distance s travelled along the straight
section before the car stops. He also measures the time t taken to travel the
distance s. He then repeats the experiment using a different value of I.
The student obtained readings with I = 40 and 60 cm, taking each reading for s
and t twice. The readings were:
I = 40.0 cm: values for s were 124 and 130 cm; values for t were 4.6 and 4.8 s
I = 60.0 cm: values for s were 186 and 194 cm; values for t were 4.9 and 5.2 s.
a For the smaller value of I, obtain a value for:
i the average value of s 11
ii the absolute and percentage uncertainty in the value of s [2]
ili the average value of t [11
iv the absolute and percentage uncertainty in the value of t. [2]
b i For both values of I, calculate the average speed v of the car along the
straight section of track using the relationship v = . 11
ii the number of significant figures that you have given for your
values of v. [11
c i [Itissuggested that s is proportional to . Explain whether the readings
support this relationship. [21
ii (HARDER) It is suggested that v is proportional to I. Explain whether
the readings support this relationship. [2]
d Describe four sources of uncertainty or limitations of the procedure for
this experiment. [4]
e Describe four improvements that could be made to this experiment. You
may suggest the use of other apparatus or different procedures. [41
[Total: 20]

8 This apparatus shows a resistor in some water.
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