> Chapter 29

Nuclear physics

LEARNING INTENTIONS

In this chapter you will learn how to:

understand the equivalence between energy and mass as represented by E = mc? and recall and
use this equation

represent simple nuclear reactions by nuclear equations

define and use the terms mass defect and binding energy

sketch the variation of binding energy per nucleon with nucleon number

explain what is meant by nuclear fusion and nuclear fission

explain the relevance of binding energy per nucleon to nuclear reactions, including nuclear fusion
and nuclear fission

calculate the energy released in nuclear reactions using E = Amc?>

understand that fluctuations in count rate provide evidence for the random nature of radioactive
decay

understand that radioactive decay is both spontaneous and random
define activity and decay constant, and recall and use A = AN
define half-life

— 0.693
use A = =

2
understand the exponential nature of radioactive decay, and sketch and use the relationship x =
xpe™, where x could represent activity, number of undecayed nuclei or received count rate.

BEFORE YOU START
* Background knowledge of radioactivity from Chapter 15 would be useful in the study of this



chapter. In pairs, write a summary of what you know.
* Try to remember, then write down, the particles that make up the nucleus and the forces the
particles experience.

* Discuss why it is sensible to express the mass of particles in atomic mass units (u).

ENERGY AND THE NUCLEUS

The existence of every living organism on the surface of the Earth, including humans, depends on the
light and heat from the Sun. Without the Sun, our planet would be a lifeless rock in space.

The Sun warms our oceans, stirs our atmosphere, creates our climate and, most importantly of all,
gives energy to the plants that provide food and oxygen for life on Earth.
How does the Sun produce its energy? The Sun is an active hot ball of gas; it converts mass into energy.

The Sun generates about 1026 W of radiant power by converting more than a billion kilograms of
matter into energy every second. You do not need to worry about the Sun dying out soon - it has lots of

mass! The mass of the Sun is about 1030 kg. Can you estimate the lifetime of the Sun?

In this chapter, we will examine how nuclear reactions produce energy. We will also look at the stability
of nuclei, and how we can model the decay of unstable nuclei with mathematical equations.

Figure 29.1: Our understanding of nuclear physics is important to all life on Earth.




29.1 Balanced equations

When an unstable nucleus undergoes radioactive decay, the nucleus before the decay is often referred to
as the parent nucleus and the new nucleus formed after the decay process is known as the daughter
nucleus.

Radioactive decay processes can be represented by balanced equations. As with all equations
representing nuclear processes, both nucleon number A and proton number Z are conserved.

* In a decay, the nucleon number decreases by 4 and the proton number decreases by 2.
* In g~ decay, the nucleon number is unchanged and the proton number increases by 1.
e In g+ decay, the nucleon number is unchanged and the proton number decreases by 1.
e In gamma decay, there is no change in either nucleon number or proton number.

The emission of a- and g-particles can be shown on a graph of nucleon number A plotted against proton
number Z, as shown in Figure 29.2. The graph will appear different if neutron number is plotted against
proton number.

A+2
=< + A
g p “.ﬁ decay |7x .
£ [ decay
=
c
o
o
g A-2
=

4 a adecay

Z-2 z Z+2

Proton number Z

Figure 29.2: Emission of o- and g-particles.

WORKED EXAMPLES

1 Radon is a radioactive gas. The isotope of radon-222 decays by o emission to become a nucleus of
polonium (Po). Here is the equation for the decay of a single isotope of radon-222:
%Rn — %{{Po + jHe
Show that A and Z are conserved.
Compare the nucleon and proton numbers on both sides of the equation for the decay:
nucleon number A: 222 = 218 + 4
proton number Z: 86 = 84 + 2

Hint: Remember that in a decay, A decreases by four and Z decreases by two. Don’t confuse
nucleon number A with neutron number N.

In this case, radon-222 is the parent nucleus and polonium-218 is the daughter nucleus.

2 A carbon-14 nucleus (parent) decays by p~ emission to become an isotope of nitrogen (daughter).
Here is the equation that represents this decay:

130 — 1§N + 701e

Show that both nucleon number and proton number are conserved.

Compare the nucleon and proton numbers on both sides of the equation for the decay:
nucleon number A: 14 =14 + 0

proton numberZ: 6=7-1

Hint: Remember that in ~ decay, A remains the same and Z increases by 1.




Questions
1 Study the decay equations given in Worked examples 1 and 2, and write balanced equations for the
following:
@ A nucleus of radon-220 (2%3 Rn) decays by o emission to form an isotope of polonium, Po.
b A nucleus of a sodium isotope (ﬁ Na) decays by g~ emission to form an isotope of magnesium,
Mg.
2 Copy and complete this equation for the = decay of a nucleus of argon:
AT — K+7



29.2 Mass and energy

In Chapter 15, we saw that energy is released when the nucleus of an unstable atom decays. How can we
calculate the amount of energy released by radioactive decay? To find the answer to this, we need to think
first about the masses of the particles involved.

We will start by considering a stable nucleus, C. This consists of six protons and six neutrons. Fortunately
for us (because we have a lot of this form of carbon in our bodies), this is a very stable nuclide. This means
that the nucleons are bound tightly together by the strong nuclear force. It takes a lot of energy to pull
them apart.

Figure 29.3 shows the results of an imaginary experiment in which we have done just that. On the left-

hand side of the balance is a single %C nucleus. On the right-hand side are six protons and six neutrons,
the result of dismantling the nucleus. The surprising thing is that the balance is tipped to the right. The
separate nucleons have greater mass than the nucleus itself. This means that the law of conservation of
mass appears to have been broken. Have we violated what was thought to be a fundamental law of nature,
something that was held to be true for hundreds of years?

Figure 29.3: The mass of a nucleus is less than the total mass of its component protons and neutrons.

Notice that, in dismantling the IEC nucleus, we have had to do work against the strong nuclear force. The
nucleons attract one another with the strong nuclear force when we try to pull them apart. So, we have
put energy into the nucleus to pull it apart, and this energy increases the potential energy of the individual
nucleons. We can think of the nucleons within the nucleus as sitting in a deep potential well that results
from the strong nuclear forces that hold the nucleus together. When we separate nucleons, we lift them
out of this potential well, giving them more nuclear potential energy. This potential well is similar to that
formed by the electric field around the nucleus; it is this well in which the atomic electrons sit, but it is
much, much deeper. This explains why it is much easier to remove an electron from an atom than to
remove a nucleon (proton or neutron) from the nucleus.

The problem of changing mass remains. To solve this problem, Einstein made the revolutionary
hypothesis about energy and mass - to him, they were equivalent. This is not an easy idea. When bodies
are in a higher energy state they have more mass than in a lower energy state. A bucket of water at the
top of a hill will have more mass than when it is at the bottom because energy has been transferred to it in
carrying it up the hill. A tennis ball travelling at 50 m s~! will have more mass than the same tennis ball
when stationary. In everyday life, the amount of extra mass is so small that it is not noticeable. However,
the large changes in energy that occur in nuclear physics and high-energy physics make the changes in
mass significant. Indeed, the increase in mass of particles, such as electrons, as they are accelerated to
speeds near to the speed of light is a well-established experimental fact.

Another way to express this is to treat mass and energy as aspects of the same thing. Rather than having
separate laws of conservation of mass and conservation of energy, we can combine these two. The total
amount of mass and energy in a system is constant. There may be conversions from one to the other, but
the total amount of ‘mass-energy’ remains constant.

Einstein’s mass-energy equation
Albert Einstein produced his famous mass-energy equation, which links energy E and mass m:

E = mc?

where c is the speed of light in a vacuum (free-space). The value of c is approximately 3.00 x 108 m s~1,



but its precise value has been fixed as ¢ = 299 792 458 m s~ L.

Generally, we will be concerned with the changes in mass owing to changes in energy, when the equation
becomes:

AE = Amc?

where AE is the change in energy corresponding to a change, Am in mass and c is the speed of light in a

vacuum.
KEY EQUATION

AE = Amc?
You may find this equation written in different forms:

E =c2Am

E = mc?

According to Einstein’s equation:
* the mass of a system increases when energy is supplied to it
* the mass of a system decreases when energy is released from it.

Now, if we know the total mass of particles before a nuclear reaction and their total mass after the
reaction, we can work out how much energy is released. Table 29.1 gives the mass in kilograms of each of
the particles shown in Figure 29.3. Notice that this is described as the rest mass of the particle; that is,
its mass when it is stationary. The mass of a particle will be greater when it is moving because of its
increase in energy. Nuclear masses are measured to a high degree of precision using mass spectrometers,
often to seven or eight significant figures.

Particle Rest mass / 1027 kg
%p 1.672 623
In 1.674 929
IEC nucleus 19.926 483

Table 29.1: Rest masses of some particles. It is worth noting that the mass of the neutron is slightly
larger than that of the proton (roughly 0.1% greater).

We can use the mass values to calculate the mass that is released as energy when nucleons combine to
form a nucleus. So, for our particles in Figure 29.3, we have:

mass of system before = mass of all the seperate nucleons
= (6x 1.672 623 + 6 x 1.674 929) x 10 ?"kg
= 20.085312 x 10 2"kg
mass of system after = mass of the carbon-12 nucleus
= 19.926 483 x 10~ 2"kg
decreases in the mass of the system = Am = (20.085 312 — 19.926 483) x 10 *"kg
= 0.158 829 x 10 *"kg

When six protons and six neutrons combine to form the nucleus of carbon-12, there is a very small loss of
mass Am, known as the mass defect.

The mass defect of a nucleus is equal to the difference between the total mass of the individual separate
nucleons and the mass of the nucleus.

The loss in mass implies that energy is released in this process. The energy released AE is given by
Einstein’s mass-energy equation. Therefore:

AE = Amc? = 0.158 829 x 1027 x (3.00 x 108)°
AE ~ 143 x 107 *J



This may seem like a very small amount of energy, but it is a lot on the atomic scale. For comparison, the
amount of energy released in a chemical reaction involving a single carbon atom would typically be of the

order of 10~!8 J, more than a million times smaller.
Now look at Worked example 3.

WORKED EXAMPLES

3 Use the following data to determine the minimum energy required to split a nucleus of oxygen-16
(1g O) into its separate nucleons. Give your answer in joules (J).

mass of proton = 1.672 623 x 10727 kg
mass of neutron = 1.674 929 x 10727 kg
mass of lgO nucleus = 26.551 559 x 10~27 kg
speed of light ¢ = 3.00 x 108 m s~1
Step 1 Find the difference 4m in kg between the mass of the oxygen nucleus and the mass of the
individual nucleons. The 120 nucleus has 8 protons and 8 neutrons.
Am = final mass — initial mass
Am = ((8x1.672623+ 8 x 1.674 929) — 26.551 559) X 10727kg)
Am =~ 2.20x 10 %kg

There is an increase in the mass of this system, therefore, external energy must be
supplied for the splitting of the oxygen-16 nucleus into its totally free nucleons.

Step 2 Use Einstein’s mass-energy equation to determine the energy supplied:
AE = Amc?
. _ 2 _
energy supplied = 2.20 x 107 x (3.00 x 10*)” ~ 1.98 x 107''J

The value is the minimum energy. If the energy were to be greater than this value, the
surplus energy would appear as kinetic energy of the nucleons.

Mass-energy conservation

Einstein pointed out that his equation AE = Amc? applied to all energy changes, not just nuclear
processes. So, for example, it applies to chemical changes too. If we burn some carbon, we start off with
carbon and oxygen. At the end, we have carbon dioxide and energy. If we measure the mass of the carbon
dioxide, we find that it is very slightly less than the mass of the carbon and oxygen at the start of the
experiment. The total potential energy of the system will be less than at the start of the experiment, hence
the mass is less. In a chemical reaction such as this, the change in mass is very small, less than a
microgram if we start with 1 kg of carbon and oxygen. Compare this with the change in mass that occurs
during the fission of 1 kg of uranium, described later. The change in mass in a chemical reaction is a
much, much smaller proportion of the original mass, which is why we don’t notice it.

Questions

3 The Sun releases vast amounts of energy. Its power output is 4.0 x 1026 W, Estimate how much its
mass decreases each second because of this energy loss.

4 a Calculate the energy released if a Z%He nucleus is formed from separate stationary protons and
neutrons. The masses of the particles are given in Table 29.2.
b Calculate also the energy released per nucleon.

Particle Mass / 10727 kg
D 1.672 623
In 1.674 929
THe 6.644 661

Table 29.2: Masses of some particles.

5 The rest mass of a golf ball is 150 g.

Calculate its increase in mass when it is travelling at 50 m s~!. What is this as a percentage of its rest
mass?



Another unit of mass

When calculating energy values using AE = Amc?, it is essential to use values of mass in kg, the SI unit of

mass. However, the mass of a nucleus is very small, perhaps 1025 kg, and these numbers are awkward.
As an alternative, atomic and nuclear masses are often given in a different unit, the atomic mass unit
(symbol u). You have already met this alternative unit for mass in Chapter 15.

The conversion factor for atomic mass unit u to kilogram (kg) is:

1u = 1.660 538 921(73) x 10727 kg
To convert the mass of a particle from u to kg, you just multiply by the conversion factor shown-usually
1.6605 x 10~27 is sufficiently accurate.

Table 29.3 shows the masses of proton, neutron and some nuclides in u. It is worth noting that the mass in
u is close to the nucleon number A. For example, the mass of uranium-235 nucleus is 235 u.

Nuclide Symbol Mass / u
proton p 1.007 276
neutron (l)n 1.008 665
helium-4 ‘;He 4.002 602
12
carbon-12 ¢C 12.000 000
potassium-40 K 39.963 998
uranium-235 2ggU 235.043 930

Table 29.3: Masses of some particles in u. Some have been measured to several more decimal places than
are shown here.

Questions
6 a The mass of an atom of gb Fe is 55.934 937 u. Calculate its mass in kg.

b The mass of an atom of 1gO is 2.656 015 x 10726 kg. Calculate its mass in u.
7 Table 29.3 gives the masses (in u) of several particles.

(Avogadro constant Ny = 6.02 x 1023 mol~1)

Use the table to determine to three significant figures:

a the mass in kg of a helium-4 nucleus
b the mass in gram (g) of 1.0 mole of uranium-235 nuclei.



29.3 Energy released in radioactive decay

Unstable nuclei may emit a- and g-particles with large amounts of kinetic energy. We can use Einstein’s

mass-energy equation AE = Amc? to explain the origin of this energy. Take, for example, the decay of a
nucleus of uranium-238. It decays by emitting an «-particle and changes into an isotope of thorium:

253U — %5 Th + ;He

The uranium nucleus is in a high-energy, relatively unstable state. It emits the o-particle and the

remaining thorium nucleus is in a lower, more stable energy state. There is a decrease in the mass of the
system. That is, the combined mass of the thorium nucleus and the o-particle is less than the mass of the
uranium nucleus. According to Einstein’s mass-energy equation, this difference in mass Am is equivalent

to the energy released as kinetic energy of the products. Using the most accurate values available:

mass of 23U nucleus = 3.952 83 x 10 *°kg

total mass of %3 Th nucleus and -particle (3He) = 3.952 76 x 10 kg
change in mass Am = (3.952 76 — 3.952 83) x 10 kg
~ —7.0x10 kg

The minus sign shows a decrease in mass, hence, according to the equation AE = Amc?2, energy is
released in the decay process:

energy released ~ 7.0 x 1073 x (3.0 X 108)2
6.3 x10713J

This is an enormous amount of energy for a single decay. One mole of uranium-238, which has 6.02 x
1023 nuclei, has the potential to emit total energy equal to about 1011 J.

We can calculate the energy released in all decay reactions, including g decay, using the same ideas.

Question

8 A nucleus of beryllium-10 (lgBe) decays into an isotope of boron by g~ emission. The chemical
symbol for boron is B.
a Write a nuclear decay equation for the nucleus of beryllium-10.
b Calculate the energy released in this decay and state its form.

(Mass of 1gBe nucleus = 1.662 38 x 10726 kg; mass of boron isotope = 1.662 19 x 10726 kg; mass of
electron = 9.109 56 x 10731 kq.)



29.4 Binding energy and stability

We can now begin to see why some nuclei are more stable than others. If a nucleus is formed from
separate nucleons, energy is released. In order to pull the nucleus apart, energy must be put in; in other
words, work must be done against the strong nuclear force that holds the nucleons together. The more
energy involved in this, the more stable the nucleus.

The minimum energy needed to completely pull a nucleus apart into its separate nucleons is known as the
binding energy of the nucleus.

Take care: this is not energy stored in the nucleus. On the contrary, it is the energy that must be put in to
the nucleus in order to pull it apart. In the example of %C discussed earlier, we calculated the binding
energy from the mass difference between the mass of the 1§C nucleus and the masses of the separate
protons and neutrons.

In order to compare the stability of different nuclides, we need to consider the binding energy per
nucleon.

We can determine the binding energy per nucleon for a nuclide as follows:

e Determine the mass defect for the nucleus.

e Use Einstein’s mass-energy equation to determine the binding energy of the nucleus by multiplying
the mass defect by c2.

* Divide the binding energy of the nucleus by the number of nucleons to calculate the binding energy
per nucleon.

Figure 29.4 shows the variation of binding energy per nucleon with nucleon number A for nuclei. The red
dot represents the plot for the iron-56 nuclide, which is from Worked example 4. The greater the value of
the binding energy per nucleon, the more tightly bound are the nucleons that make up the nucleus. The
most striking observation is that not all nuclides are the same - some nuclides are more tightly bound
than others.
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Figure 29.4: This graph shows the binding energy per nucleon for a number of nuclei. The nucleus
becomes more stable as binding energy per nucleon increases.

If you further examine this graph, you will see that the general trend is for light nuclei to have low
binding energies per nucleon. Note, however, that helium has a much higher binding energy than its
place in the Periodic Table might suggest. The high binding energy per nucleon means that it is very
stable. Other common stable nuclei include 6C and 16O which can be thought of, respectively, as three
and four o-particles bound together (Figure 29.5).



e
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Figure 29.5: More stable nuclei are formed when ‘a-particles’ are bound together. In 1§C and 12 O, the

‘o-particles’ do not remain separate, as shown here; rather, the protons and neutrons are tightly packed
together.

For nuclides with A > 20 approximately, there is not much variation in binding energy per nucleon. The
greatest value of binding energy per nucleon is found for ggFe. This isotope of iron requires the most
energy per nucleon to dismantle it into separate nucleons; hence iron-56 is the most stable isotope in
nature.

WORKED EXAMPLES

4 Use the following data to calculate the binding energy per nucleon for the nuclide ggFe.

mass of neutron = 1.675 x 10727 kg

mass of proton = 1.673 x 10727 kg

mass of 33 Fe nucleus = 9.288 x 10726 kg

Step 1 Calculate the mass defect.
number of neutrons = 56 — 26 = 30
mass defect = (30 x 1.675 x 10 %" + 26 x 1.673 x 10 *") — 9.288 x 10 %
mass defect = 8.680 x 10~ *’kg

Step 2 Calculate the binding energy of the nucleus using Einstein’s mass-energy Zequation.
binding energy = Amc? = 8.680 x 107 x (3.00 x 108)2
binding energy = 7.812 x 10711J

Step 3 Calculate the binding energy per nucleon.
binding energy per nucleon = 7812x10% 14 % 10713

56
Have another look at Figure 29.4. The value matches with the plot of iron-56.

Questions

9 a Explain why hydrogen %H (proton) cannot appear on the graph shown in Figure 29.4.
b Use Figure 29.4 to estimate the binding energy of the nuclide 1§N.

10 The mass of a §Be nucleus is 1.33 x 10726 kg. For the nucleus of § Be, determine:

a the mass defect in kg
b the binding energy of the nucleus in MeV
¢ the binding energy (in MeV) per nucleon for the nucleus.

Binding energy, fission and fusion

We can use the binding energy graph to help us decide which nuclear processes - fission, fusion,
radioactive decay - are likely to occur (Figure 29.6).

Fission
Fission is the process in which a massive nucleus splits to form two smaller fragments (rather than
simply emitting a- or g-radiation).

The isotope of uranium-235 can split spontaneously, but such an event is very rare. However, in a process
known as induced fission, uranium-235 can be made split by absorbing a slow-moving neutron. A typical
nuclear reaction is shown:



in+ %50 — BU - '%Ba+ $Kr+ 24n

The uranium-235 nucleus captures the neutron and becomes a highly unstable nucleus of uranium-236. In
a very short period of time, typically a few microseconds, the fission of uranium-236 results in barium-
142, krypton-92 and two fast-moving neutrons. Energy is released in the reaction as kinetic energy
because the total mass of the system decreases. This is what we would expect from Einstein’s mass-
energy equation. There is now another alternative way of interpreting this reaction. If we look at Figure
29.6, we see that these two fragments have greater binding energy per nucleon than the original uranium
nucleus. Hence, if the uranium nucleus splits in this way, energy will be released. The total binding

energy of 1‘5% Ba and g% Kr, is greater than the binding energy of 233 U-the difference is the energy
released. (Note: the neutron is a lone nucleon, so it has zero binding energy.)
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Figure 29.6: Both fusion and fission are processes that tend to increase the binding energy per nucleon
of the particles involved.

Fusion

Fusion is the process by which two very light nuclei join together to form a heavier nucleus. This is the
process by which energy is released in the Sun, when hydrogen nuclei fuse to form helium nuclei. When
two light nuclei join together, the final binding energy of the nucleus formed is greater than the total
binding energy of the fusing-nuclei - once again, the difference is the energy released in the fusion

reaction. The high binding energy of the %He nuclide means that it is rare for these nuclei to fuse.

The following fusion reaction is one of the many taking place inside the core of stars, including our Sun:
H+!p —3 He

A deuterium nucleus @ H) joins together with a proton G p), to make the helium-3 nucleus. The binding
energy of deuterium nucleus is 2.2 MeV, and the binding energy of helium-3 nucleus is 7.7 MeV. The
energy released in this fusion reaction is 5.5 MeV, which is the difference in the two binding energies. It
is worth noting that the binding energy per nucleon of the helium-3 nucleus is greater that of the
deuterium nucleus - fusion increases the binding energy per nucleon, as shown on Figure 29.6.

Questions

11 Use the binding energy graph (Figure 29.6) to suggest why fission is unlikely to occur with ‘light
nuclei’ (A < 20) and why fusion is unlikely to occur for heavier nuclei (A > 40).

12 Use the information given in the fusion section, to determine the binding energy (in MeV) per nucleon
of each particle in the following fusion reaction:

2 1 3
tH-+;p —3 He
Comment on your answers.






29.5 Randomness and radioactive decay

Listen to a counter connected to a Geiger-Miiller (GM) tube that is detecting the radiation from a weak
source, so that the count rate is about one count per second. Each count represents the detection of a
single a-particle or a g-particle or a y-ray photon. You will notice that the individual counts do not come
regularly.

The counter beeps or clicks in a random, irregular manner. If you try to predict when the next clicks will
come, you are unlikely to be right.

You can see the same effect if you have a ratemeter, which can measure faster rates (Figure 29.7). The
needle fluctuates up and down. Usually, a ratemeter has a control for setting the ‘time constant’-the time
over which the meter averages out the fluctuations. Usually, this can be set to 1 s or 5 s. The fluctuations
are smoothed out more on the 5 s setting.

Figure 29.7: The time constant of this ratemeter can be adjusted to smooth out rapid fluctuations in the
count rate.

Figure 29.8 shows a graph of count rate against time, with a smoothing of a few seconds. The count rate
decreases with time as the number of radioactive nuclei that are left decreases. The fluctuations either
side are caused by the randomness of the decay.
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Figure 29.8: Count rate showing randomness of decay.

So, it is apparent that radioactive decay is a random, irregular phenomenon. But is it completely
unpredictable? Well, not really. We can measure the average rate of decay. We might measure the number
of counts detected in 1000 s, and then calculate the average number per second. We cannot be sure about
this average rate either, because the number of counts in 1000 s will fluctuate, too. All of our
measurements of radioactive decay are inherently uncertain and imprecise but, by taking averages over a
sufficiently long time period, we can reduce or smooth out the random fluctuations to reveal the
underlying pattern.



Spontaneous decay

Radioactive decay occurs within the unstable nucleus of an atom. A nucleus emits radiation and becomes
the nucleus of an atom of a different element. We cannot predict, for a particular nucleus, when it will
happen. If we sit and stare at an individual nucleus, we cannot see any change that will tell us that it is
getting ready to decay. And if it doesn’t decay in the first hour when we are watching it, we cannot say
that it is any more likely to decay in the next hour. What is more, we cannot affect the probability of an
individual nucleus decaying, for example, by changing its temperature.

This is slightly odd, because it goes against our everyday experience of the way things around us change.
We observe things changing. They gradually age, die, rot away. But this is not how things are on the scale
of atoms and nuclei. Many of the atoms of which we are made have existed for billions of years, and will
still exist long after we are gone. The nucleus of an atom does not age.

If we look at a very large number of atoms of a radioactive substance, we will see that the number of
undecayed nuclei gradually decreases. However, we cannot predict when an individual nucleus will
decay. Each nucleus ‘makes up its own mind’ when to decay, independently from its neighbours. This is
because neighbouring nuclei do not interact with one another (unlike neighbouring atoms). The nucleus is
a tiny fraction of the size of the atom, and the nuclear forces do not extend very far outside the nucleus.
So, one nucleus cannot affect a neighbouring nucleus by means of the nuclear force. Being inside a
nucleus is a bit like living in a house in the middle of nowhere; you can just see out into the garden, but
everything is darkness beyond and the next house is 1000 km away.

The fact that individual nuclei decay independently of their neighbours and of environmental factors,
accounts for the random pattern of clicks that we hear from a Geiger counter and the fluctuations of the
needle on the ratemeter. Radioactive decay is both spontaneous and random.

Nuclear decay is spontaneous because:
* the decay of a particular nucleus is not affected by the presence of other nuclei

* the decay of nuclei cannot be affected by chemical reactions or external factors such as temperature
and pressure.

Nuclear decay is random because:
» it is impossible to predict when a particular nucleus in a sample is going to decay
* each nucleus in a sample has the same chance of decaying per unit time.



29.6 The mathematics of radioactive decay

We have seen that radioactive decay is a random, spontaneous process. Because we cannot say when an
individual nucleus will decay, we have to start thinking about very large numbers of nuclei. Even a tiny
speck of radioactive material will contain more than 1012 nuclei. Then we can talk about the average
number of nuclei that we expect to decay in a particular time interval; in other words, we can find out the
average decay rate. Although we cannot make predictions for individual nuclei, we can say that certain
types of nuclei are more likely to decay than others. For example, a nucleus of carbon-12 is stable;
carbon-14 decays gradually over thousands of years; carbon-15 nuclei last, on average, a few seconds.

So, because of the spontaneous nature of radioactive decay, we have to make measurements on very large
numbers of nuclei and then calculate averages. One quantity we can determine is the probability that an
individual nucleus will decay in a particular time interval. For example, suppose we observe one million
nuclei of a particular isotope. After one hour, 200 000 have decayed. Then the probability that an
individual nucleus will decay in one hour is 0.2 or 20%, since 20% of the nuclei have decayed in this time.
(Of course, this is only an approximate value, since we might repeat the experiment and find that only
199 000 decay because of the random nature of the decay. The more times we repeat the experiment, the
more reliable our answer will be.)

We can now define the decay constant:

The probability that an individual nucleus will decay per unit time interval is called the decay constant,
A.

For the example, we have:

decay constant 4 = 0.20 h~!
Note that, because we are measuring the probability of decay per unit time interval, 1 has units of h~1 (or
s™1, day~1, year™1, etc.).
The activity A of a radioactive sample is the rate at which nuclei decay or disintegrate.
Activity is measured in decays per second (or h™!, day~1). An activity of one decay per second is one
becquerel (1 Bq):

1Bg=1s"1

Clearly, the activity of a sample depends on the decay constant /. of the isotope under consideration. The
greater the decay constant (the probability that an individual nucleus decays per unit time interval), the
greater is the activity of the sample. It also depends on the number of undecayed nuclei N present in the
sample.

For a sample of N undecayed nuclei, we have:
A =—-)N

where / is the decay constant of the isotope and N is the number of undecayed nuclei.

Activity A is given by:

A =—-IN

Activity A is equal to rate of decay of nuclei; therefore A = AN.

The minus sign indicates that the number of undecayed nuclei decreases with time. We can omit this
minus sign if we just want to determine the magnitude of the activity. So, in calculations, we can just use
A =)N.

We can also think of the activity as the number of o- or p-particles emitted from the source per unit time.
Hence, we can also write the activity A as:

_ AN
A_At

where 4N is equal to the number of emissions (or decays) in a small time interval of 4t.

WORKED EXAMPLE

5 A radioactive source emits g-particles. The source has an activity of 2.8 x 107 Bq. Estimate the



number of g-particles emitted in a time interval of 2.0 minutes. State one assumption made.
Step 1 Write down the given quantities in SI units.

A=28x10"Bq At=120s
Step 2 Determine the number of g-particles emitted.

_ AN
A*At

AN = AxAt=28x10" x 120
= 3.36 x 10° ~ 3.4 x 10°
We have assumed that the activity remains constant over a period of 2.0 minutes.

6 A sample consists of 1000 undecayed nuclei of a nuclide whose decay constant is 0.20 s~1.
Determine the initial activity of the sample. Estimate the activity of the sample after 1.0 s.

Step 1 Since activity A = /N, we have:
A =0.20 x 1000 = 200 s~ = 200 Bq

Step 2 After 1.0 s, we might expect 800 nuclei to remain undecayed.
The activity of the sample would then be:
A=0.2x800=160s"! =160 Bq

(In fact, it would be slightly higher than this. Since the rate of decay decreases with time all the
time, less than 200 nuclei would decay during the first second.)

Count rate

Although we are often interested in finding the activity of a sample of radioactive material, we cannot
usually measure this directly. This is because we cannot easily detect all of the radiation emitted. Some
will escape past our detectors, and some may be absorbed within the sample itself. A (Geiger-Muller) GM
tube placed in front of a radioactive source therefore only detects a fraction of the activity. The further it
is from the source, the smaller the count rate. Therefore, our measurements give a received count rate R
that is significantly lower than the activity A. If we know how efficient our detecting system is, we can
deduce A from R. If the level of background radiation is significant, then it must be subtracted to give the
corrected count rate.

Questions

13 A sample of carbon-15 initially contains 500 000 undecayed nuclei. The decay constant for this
isotope of carbon is 0.30 s~1.
Calculate the initial activity of the sample.

14 A small sample of radium gives a received count rate of 20 counts per minute in a detector. It is
known that the counter detects only 10% of the decays from the sample. The sample contains 1.5 x
109 undecayed nuclei. Calculate the decay constant of this form of radium.

15 A radioactive sample is known to emit «-, f- and y-radiations.

Suggest four reasons why the count rate measured by a Geiger counter placed next to this sample
would be lower than the activity of the sample.



29.7 Decay graphs and equations

The activity of a radioactive substance gradually diminishes as time goes by. The atomic nuclei emit
radiation and become different substances. The pattern of radioactive decay is an example of a very
important pattern found in many different situations, a pattern called exponential decay. Figure 29.9
shows the decay graphs for three different isotopes, each with a different rate of decay.

-

Number of undecayed
nuclei
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0 Time

Figure 29.9: Some radioactive materials decay faster than others.

Although the three graphs look different, they all have something in common - their shape. They are
curved lines having a special property. If you know what is meant by the half-life of an isotope, then you
will understand what is special about the shape of these curves.

The half-life £1 of an isotope is the mean time taken for half of the active nuclei in a sample to decay.
2

In a time equal to one half-life, the activity of the sample will also halve. This is because activity is directly
proportional to the number of undecayed nuclei (A x N). It takes the same amount of time again for half of
the remainder of the nuclei to decay, and a third half-life for half of the new remainder to decay (Figure
29.10).
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Figure 29.10: All radioactive decay graphs have the same characteristic shape.

In principle, the graph never reaches zero; it just gets closer and closer. In practice, when only a few
undecayed nuclei remain, the graph will cease to be a smooth curve (because of the random nature of the
decay) and it will eventually reach zero. We use the idea of half-life because we cannot say when a sample
will have completely decayed.

Mathematical equations for radioactive decay

We can write an equation to represent the graph shown in Figure 29.10. If we start with Ny undecayed
nuclei, then the number N that remain undecayed after time t is given by:

N=Nge™#



In this equation, 4 is the decay constant of an isotope, as before. (You may also see this written as N = N
exp (—it).) Note that you must take care with units. If 1 is in s~1, then the time t must be in s.

The symbol e represents the number e = 2.71828..., a special number in the same way that = is a special
number. You will need to be able to use the eX button on your calculator to solve problems involving e.

PRACTICAL ACTIVITY 31.1

Determining half-life

If you are to determine the half-life of a radioactive substance in the laboratory, you need to choose
something that will not decay too quickly or too slowly. In practice, the most suitable isotope is
protactinium-234, which decays by emitting f~-radiation. This is available in a bottle containing a
solution of a uranium compound (uranyl(VI) nitrate) (Figure 29.11). By shaking the bottle, you can
separate the protactinium into the top layer of solvent in the bottle. The counter allows you to measure
the decay of the protactinium.

After recording the number of counts in consecutive 10-second intervals over a period of a few minutes,
you can then draw a graph, and use it to find the half-life of protactinium-234.

GM coynter

tube

protactinium in
floating layer

denser layer
of uranyl(Vl)
nitrate solution

Figure 29.11: Practical arrangement for observing the decay of protactinium-234.

The activity A of a sample is directly proportional to the number of undecayed nuclei N. Hence the activity
of the sample decreases exponentially:

A=Age™™ (Agis the activity at time t = 0.)

Usually, we measure the corrected count rate R in the laboratory rather than the activity or the number of
undecayed nuclei. Since the count rate is a fraction of the activity, it too decreases exponentially with time:

R=Rye™* (Rgis the corrected count rate at time t = 0.)

X = Xp e—“

where x can represent activity A, number of undecayed nuclei N or
received count rate R.

(% is the decay constant and x is the quantity left at time t.)

Now look at Worked examples 7 and 8.

WORKED EXAMPLES

7  Suppose we start an experiment with 1.0 x 1015 undecayed nuclei of an isotope for which 4 is equal
to 0.02 s~1. Determine the number of undecayed nuclei after 20 s.

Step 1 In this case, we have Ny = 1.0 x 101°, 7 = 0.02 s7! and t = 20 s. Substituting in the equation
gives:
N =1.0 x 1015 7002 x 20

Step 2 Use the eX button and calculate N.
N =1.0 x 1012 ¢7002x20 =57 x 1014




N =1000 e~0-10xt

8 A sample initially contains 1000 undecayed nuclei of an isotope whose decay constant 4 = 0.10 min
~1. Draw a graph to show how the sample will decay over a period of 10 minutes.

Step 1 We have Ny = 1000 and 4 = 0.10 min~!. Hence, we can write the equation for this decay:

Step 2 Calculate values of the number N of undecayed nuclei at intervals of 1.0 min (60 s); this
gives Table 29.4 and the graph shown in Figure 29.12.

t / min 0 1.0 2.0 3.0 4.0 5.0

N 1000 905 819 741 670 607

t / min 6.0 7.0 8.0 9.0 10.0

N 549 497 449 407 368

Table 29.4: For Worked example 8.
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Figure 29.12: Radioactive decay graph.
Questions
16 The isotope nitrogen-13 has a half-life of 10 min. A sample initially contains 8.0 x 1010 undecayed
nuclei.

a Write down an equation to show how the number undecayed N depends on time t.
b Calculate how many undecayed nuclei will remain after 10 min, and after 20 min.
¢ Determine how many nuclei will decay during the first 30 min.

17 A sample of an isotope for which 2 = 0.10 s~! contains 5.0 x 109 undecayed nuclei at the start of an
experiment. Determine:

a the number of undecayed nuclei after 50 s
b its activity after 50 s.

18 The value of A for protactinium-234 is 9.6 x 1073 s~1. Table 29.5 shows the number of undecayed
nuclei N in a sample.

Copy and complete Table 29.5. Draw a graph of N against ¢, and use it to find the half-life £1 of
2

protactinium-234.

t/s 0 20 40 60 80 100 120 140

N 400 330

Table 29.5: Data for Question 18.




29.8 Decay constant / and half-life ¢
2

An isotope that decays rapidly has a short half-life t1 . Its decay constant must be large, since the
2

probability per unit time of an individual nucleus decaying must be high. What is the connection between
the decay constant and the half-life?

IfeX=y thenx=1Iny

In a time equal to one half-life {1 , the number of undecayed nuclei is halved. Hence the equation:
2

N = Nye
becomes:
—At1
v ()
N ¢ T2
Therefore:
At1
e 7 2
Aty = In2
2
~ 0.693

The half-life of an isotope and the decay constant are inversely proportional to each other. That is:

N = o2

Thus, if we know either £1 or 4, we can calculate the other. For a nuclide with a very long half-life, we
2

might not wish to sit around waiting to measure the half-life; it is easier to determine A by measuring the
activity (and using A = /N) and use that to determine ¢1 .
2

Note that the units of A and 1 must be compatible; for example, £ in s~ and t1 ins.
2 2

KEY EQUATION

Half-life and decay constant are related as follows:

_ In2
)\ _ t

o Nl=

(=}
=
w

o=

Questions

19 Figure 29.13 shows the decay of an isotope of caesium, lgé Cs. Use the graph to determine the half-life

of this nuclide in years, and hence find the decay constant in year™!.
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Figure 29.13: Decay graph for an isotope of caesium. For Question 19.

20 The decay constant of a particular isotope is 3.0 x 10~% s~!. Calculate how long it will take for the
activity of a sample of this substance to decrease to one-eighth of its initial value.

21 The isotope ‘SN decays with a half-life of 7.4 s.

a Calculate the decay constant for this nuclide.
b A sample of N initially contains 5000 nuclei. Calculate how many will remain after a time of:

i 14.8s
ii 20.0s.
22 A sample contains an isotope of half-life ¢ L
a Show that the fraction f of nuclei in the sample that remain undecayed after a time t is given by
the equation:
f= (%)nwhere n = ti

1
2
b Calculate the fraction f after each of the following times:
i t:
2
ii 2t
2
iii 2.5t1

REFLECTION

Without looking at your textbook, list all equations that contain decay constant A.
What information can you get from the gradient of a graph of N against t?

Have a competition with a classmate. Use the internet for about 5 mins to find an isotope with the
shortest half-life and the longest half-life.

What did this competition reveal about you as a learner?




SUMMARY

Nuclear reactions can be represented by equations of the form:

14 14 0
¢C— TN+ "e

Einstein’s mass-energy equation AE = Amc? relates mass changes to energy changes.

The mass defect is equal to the difference between the mass of the separate nucleons and that of the
nucleus.

The mass of nuclear particles may be measured in atomic mass unit (u), where:

1u=1.660 x 10727 kg

The binding energy of a nucleus is the minimum energy required to break up the nucleus into
separate nucleons.

The binding energy per nucleon indicates the relative stability of different nuclides.

The variation of binding energy per nucleon shows that energy is released when light nuclei undergo
fusion and when heavier nuclei undergo fission, because these processes increase the binding energy
per nucleon and, hence, result in more stable nuclides.

Nuclear decay is a spontaneous and random process. This unpredictability means that count rates
tend to fluctuate, and we have to measure average quantities.

The half-life t1 of an isotope is the mean time taken for half of the active nuclei in a sample to decay.
2

The decay constant / is the probability that an individual nucleus will decay per unit time interval.

The activity A of a sample is related to the number of undecayed nuclei in the sample N by: A = AN

The decay constant and half-life are related by the equation:

We can represent the exponential decrease of a quantity with time t by an equation of the form:
x = xo e~

where x can be activity A, count rate R or number of undecayed nuclei N.




EXAM-STYLE QUESTIONS

Which expression is correct for determining the energy (in electronvolt eV)
produced from a mass change of 1 u?

A 1.0 x (3.00 x 108)2

B 1.66 x 10727 x (3.00 x 108)2

C 1.66 x 10727 x (3.00 x 108)2 x 1.60 x 10~19
D

(3.00x10°)°
1.60x10
A student determines the half-life of an isotope to be 66 + 5 s.

1.66 x 10727 x

What is the absolute uncertainty in the decay constant?
A 80x107%s7!
B 1.1x1073s71
C 53x102s7!
D 7.6x1072s71

An antiproton is identical to a proton except that it has negative charge. When
a proton and an antiproton collide, they are annihilated and two photons are
formed. In annihilation, all the mass of the particles is converted into energy.

a Calculate the energy released in the reaction.

b Calculate the energy released if 1 mole of protons and 1 mole of
antiprotons were annihilated by this process.

(Mass of a proton = mass of an antiproton = 1.67 x 10727 kg.)

Calculate the mass that would be annihilated to release 1 J of energy.

In a nuclear reactor, the mass converted to energy takes place at a rate of 70

ng s~1. Calculate the maximum power output from the reactor assuming that it
is 100% efficient.

The equation shows the radioactive decay of radon-222.

22Rn — {Po+ia+y

Calculate the total energy output from this decay and state what forms of
energy are produced.

(Mass of 33 Rn = 221.970 u, mass of “33Po = 217.963 u, mass of ja = 4.002u,
1 u is the unified atomic mass unit = 1.660 x 10727 kg.)
(Hint: find the mass defect in u, then convert to kg.)

A carbon-12 atom consists of six protons, six neutrons and six electrons. The
unified atomic mass unit (u) is defined as % the mass of the carbon-12 atom.

Calculate:

a the mass defect in kilograms

b the binding energy

¢ the binding energy per nucleon.

(Mass of a proton = 1.007 276 u, mass of a neutron = 1.008 665 u, mass of
an electron = 0.000 548 u.)

The fusion reaction that holds most promise for the generation of electricity is
the fusion of tritium ?H and deuterium %H The following equation shows the
process:

SH+2H —% He+1 H

Calculate:

a the change in mass in the reaction
b the energy released in the reaction

[11

[1]

[31

[31

[Total: 6]
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[31
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21
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[Total: 6]

[31
[21



¢ the energy released if one mole of deuterium were reacted with one mole
of tritium. 2]

(Mass of‘;’H = 3.015 500 u, mass of%H = 2.013 553 u, mass ong =
4.001 50 u; mass of iH =1.007 276 u.)

[Total: 7]
9 The initial activity a sample of 1 mole of radon-220 is 8.02 x 1021 s=1,
Calculate:
a the decay constant for this isotope [31
b the half-life of the isotope. [2]
[Total: 5]
10 The graph of count rate against time for a sample containing indium-116 is
shown.
’—U'!
—
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Figure 29.14
a Use the graph to determine the half-life of the isotope. 2]
b Calculate the decay constant. [2]
[Total: 4]
11 The proportions of different isotopes in rocks can be used to date the rocks.
The half-life of uranium-238 is 4.9 x 109 years. A sample has 99.2% of the
proportion of this isotope compared with newly formed rock.
a  Calculate the decay constant in y~? for this isotope of uranium. [2]
b Calculate the age of the rock in years. 31
[Total: 5]
12 The table shows the received count rate when a sample of the isotope
vanadium-52 decays.
Count 187 159 134 110 85 70 60 56| 40
rate / st
Table 29.6
a i Sketch a graph of the count rate against the time. [2]
ii Comment on the scatter of the points. [11
From the graph, determine the half-life of the isotope. [11
¢ Describe the changes to the graph that you would expect if you were given
a larger sample of the isotope. [2]
[Total: 6]

13 This question is about the nucleus of uranium-235 (233U), which has a mass of

3.89 x 10725 kg.



14

15

16

a State the number of protons and neutrons in this nucleus.

b The radius r of a nucleus is given by the equation:

1
r=1.41x 107143
where A is the nucleon number of the nucleus.
Calculate the density of the 233U nucleus.

¢ Explain why the total mass of the nucleons is different from the mass of the
U nucleus.

d Without calculations, explain how you can determine the binding energy
per nucleon for the uranium-235 nucleus from its mass and the masses of a
proton and a neutron.

a Explain what is meant by nuclear fusion and explain why it only occurs at
very high temperatures.

b The main reactions that fuel the Sun are the fusion of hydrogen nuclides to
form helium nuclides. However, other reactions do occur. In one such
reaction, known as the triple alpha process, three helium nuclei collide and
fuse to form a carbon-12 nucleus.

i Explain why temperatures higher than those required for the fusion of
hydrogen are needed for the triple alpha process.
ii Calculate the energy released in the triple alpha process.

(Mass of a helium (%He) nucleus = 4.001 506 u, mass of a carbon (12 C)
nucleus = 12.000 000 u, 1 u = 1.660 x 10~27kg.)

The isotope of polonium,zzlﬁPo, decays by the emission of an a-particle with a

half-life of 183 s.

a In an accident at a reprocessing plant some of this isotope, in the form of
dust, is released into the atmosphere.

Explain why a spillage in the form of a dust is far more dangerous to health
than a liquid spillage.

b It is calculated that 2.4 g of the isotope is released into the atmosphere.
The molar mass of polonium is 218 g mol~1.
Calculate the initial activity of the released polonium.

c¢ It is felt that it would safe to re-enter the laboratory when the activity falls
to background, about 10 Bq.

Calculate how many hours must pass before it is safe to re-enter the
laboratory.

A nuclear reactor is fuelled by fission of uranium. The output from the reactor
is 200 MW. The following equation describes a typical fission reaction:

28U 4 In — 28U — $Br + 9L + 3n

a State and explain into what form the majority of the energy released in the
reaction is transformed.

b i Calculate the energy released in the reaction. The kinetic energy of the
captured neutron is negligible.

ii Assume that the energy released in this fission is typical of all fissions
of U-236. Calculate how many fissions occur each second.

iii Calculate the mass of uranium-235 that is required to run the reactor
for 1 year.

(Mass of 23U = 3.90 x 10725 kg, mass of 3¢ Br = 1.44 x 10725 kg, mass of
13La = 2.42 x 10725 kg, mass of neutron = 1.67 x 10727 kg, 1 year = 3.15 x
107 s, molar mass of uranium-235 = 235 g mol~1.)
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