> Chapter 23

Capacitance

LEARNING INTENTIONS

In this chapter you will learn how to:

e define capacitance and state its unit, the farad

* solve problems involving charge, voltage and capacitance

* deduce the electric potential energy stored in a capacitor from a potential-charge graph
e deduce and use formulae for the energy stored by a capacitor

¢ derive and use formulae for capacitances in series and parallel

* recognise and use graphs showing variation of potential difference, current and charge as a
capacitor discharges.

¢ recall and use the time constant for a capacitor-resistor circuit
* use the equation for the discharge of a capacitor through a resistor.

BEFORE YOU START

* In order to avoid an electric shock, electrical engineers regularly connect various points to Earth,
even though the equipment is disconnected from the mains supply.

*  What does this suggest to you is happening? How can you get a shock when the equipment is not
connected to the mains? Discuss with a partner and be prepared to share your thoughts with the
rest of the class.

CAPACITORS

Most electronic devices, such as radios, computers and MP3 players, make use of components called
capacitors. These are usually quite small, but Figure 23.1 shows a giant capacitor, specially constructed
to store electrical energy at the Fermilab particle accelerator in the United States.




Fermilab is a particle physics and accelerator laboratory. Particle accelerators, as the name suggests,
accelerate particles, such as protons, up to incredibly high energies. The ‘tevatron’ at Fermilab can
accelerate protons up to energies of approximately 2 TeV (1012 eV). High-energy, but short-lasting
voltage pulses (100 000 V lasting 10~° s) are required to accelerate the particles. Such pulses would
disrupt the public electricity supply. To ensure the public power supply is evenly loaded and is not
disrupted by peak pulses, large capacitors (temporary energy storage devices) are continuously
charged and discharged 50 times per second.

Wind turbines and solar cells only generate energy in suitable weather conditions. Could huge
capacitors be used to store electrical energy generated when the weather conditions are suitable for
use at times when it is not? How else could the energy be stored?
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Figure 23.1: One of the world’s largest capacitors, built to store energy at the Fermilab particle
accelerator.




23.1 Capacitors in use

Capacitors are used to store energy in electrical and electronic circuits. This means that they have many
valuable applications. For example, capacitors are used in computers; they store energy in normal use
and then they gradually release this energy if there is a power failure, so that the computer will operate
long enough to save valuable data. Figure 23.2 shows a variety of shapes and sizes of capacitors.

Every capacitor has two leads, each connected to a metal plate. To store energy, these two plates must be
given equal and opposite electric charges. Between the plates is an insulating material called the
dielectric. Figure 23.3 shows a simplified version of the construction of a capacitor; in practice, many
have a spiral form.

Figure 23.2: A variety of capacitors.

To move charge onto the plates of a capacitor, it must be connected to a voltage supply. The negative
terminal of the supply pushes electrons onto one plate, making it negatively charged. Electrons are
repelled from the other plate, making it positively charged. Figure 23.4 shows that there is a flow of
electrons all the way round the circuit.

The two ammeters will give identical readings. The current stops when the potential difference (p.d.)
across the capacitor is equal to the electromotive force (e.m.f.) of the supply. We then say that the
capacitor is ‘fully charged’.
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Figure 23.3: The construction of two types of capacitor.
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Figure 23.4: The flow of charge when a capacitor is charged up.

Note: The convention is that current is the flow of positive charge. Here, it is free electrons that flow.
Electrons are negatively charged; conventional current flows in the opposite direction to the electrons

(Figure 23.5).
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Figure 23.5: A flow of electrons to the right constitutes a conventional current to the left.

Charge on the plates

Think about a capacitor with uncharged plates. Each plate has equal amounts of positive and negative
charge. Connecting the capacitor to a supply pulls charge +Q from one plate and transfers it to the other,
leaving behind charge —Q. The supply does work in separating the charges. Since the two plates now
store equal and opposite charges, the total charge on the capacitor is zero. When we talk about the
‘charge stored’ by a capacitor, we mean the quantity Q, the magnitude of the charge stored on each plate.

To make the capacitor plates store more charge, we would have to use a supply of higher e.m.f. If we
connect the leads of the charged capacitor together, electrons flow back around the circuit and the
capacitor is discharged.

You can observe a capacitor discharging as follows. Connect the two leads of a capacitor to the terminals
of a battery. Disconnect, and then reconnect the leads to a light-emitting diode (LED). It is best to have a
protective resistor in series with the LED. The LED will glow briefly as the capacitor discharges.

In any circuit, the charge that flows past a point in a given time is equal to the area under a current-time
graph (just as distance is equal to the area under a speed-time graph). So the magnitude of the charge on
the plates in a capacitor is given by the area under the current-time graph recorded while the capacitor is
being charged up.

The meaning of capacitance

If you look at some capacitors, you will see that they are marked with the value of their capacitance. The
greater the capacitance, the greater is the charge on the capacitor plates for a given potential difference
across it.

The capacitance C of a capacitor is defined by:

capacitance __charge
p potential difference

c = 2

v

where Q is the magnitude of the charge on each of the capacitor’s plates and V is the potential difference
across the capacitor.



charge

capac1tance = potential difference

c = 2

The charge on the capacitor may be calculated using the equation:
Q=VC

This equation shows that the charge depends on two things: the capacitance C and the voltage V (double
the voltage means double the charge). Note that it isn’t only capacitors that have capacitance. Any object
can become charged by connecting it to a voltage. The object’s capacitance is then the ratio of the charge
to the voltage.

Units of capacitance

The unit of capacitance is the farad, F. From the equation that defines capacitance, you can see that this
must be the same as the units of charge (coulombs, C) divided by voltage (V):

1F=1CcvVv!

(It is unfortunate that the letter ‘C’ is used for both capacitance and coulomb. There is room for confusion
here!)

In practice, a farad is a large unit. Few capacitors have a capacitance of 1 F. Capacitors usually have their
values marked in picofarads (pF), nanofarads (nF) or microfarads (uF):
1nF=10"°F

1pF=10"12F 1uF=10"6F

Other markings on capacitors

Many capacitors are marked with their highest safe working voltage. If you exceed this value, charge may
leak across between the plates, and the dielectric will cease to be an insulator. Some capacitors
(electrolytic ones) must be connected correctly in a circuit. They have an indication to show which end
must be connected to the positive of the supply. Failure to connect correctly will damage the capacitor,
and can be extremely dangerous.

Questions

1 Calculate the charge on a 220 pF capacitor charged up to 15 V. Give your answer in microcoulombs
(nC) and in coulombs (C).

2 Acharge of 1.0 x 1073 C is measured on a capacitor with a potential difference across it of 500 V.
Calculate the capacitance in farads (F), microfarads (uF) and picofarads (pF).

3 Calculate the average current required to charge a 50 pF capacitor to a p.d. of 10 V in a time interval
of 0.01 s.

4 A student connects an uncharged capacitor of capacitance C in series with a resistor, a cell and a
switch. The student closes the switch and records the current I at intervals of 10 s. The results are
shown in Table 23.1. The potential difference across the capacitor after 60 s is 8.5 V. Plot a current-
time graph, and use it to estimate the value of C.

t/s

0

10

20

30

40

50

60

I/pA

200

142

102

75

51

37

27

Table 23.1 Data for Question 4.




23.2 Energy stored in a capacitor

When you charge a capacitor, you use a power supply to push electrons onto one plate and off the other.
The power supply does work on the electrons, so their potential energy increases. You recover this energy
when you discharge the capacitor.

If you charge a large capacitor (1000 pF or more) to a potential difference of 6.0 V, disconnect it from the
supply and then connect it across a 6.0 V lamp, you can see the lamp glow as energy is released from the
capacitor. The lamp will flash briefly. Clearly, such a capacitor does not store much energy when it is
charged.

In order to charge a capacitor, work must be done to push electrons onto one plate and off the other
(Figure 23.6). At first, there is only a small amount of negative charge on the left-hand plate. Adding more
electrons is relatively easy, because there is not much repulsion. As the charge on the plate increases, the
repulsion between the electrons on the plate and the new electrons increases, and a greater amount of
work must be done to increase the charge on the plate.

other electrons

onplaterepel (= 1)
this electron
force & H force
pushing —=() r—= pulling
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] O,
G O,

Figure 23.6: When a capacitor is charged, work must be done to push additional electrons against the
repulsion of the electrons that are already present.

This can be seen qualitatively in Figure 23.7a. This graph shows how the p.d. V increases as the amount
of charge Q increases. It is a straight line because Q and V are related by:

_Q
V=25

We can use Figure 23.7a to calculate the work done in charging up the capacitor.

First, consider the work done W in moving charge Q through a constant p.d. V. This is given by:
W=QV

(You studied this equation in Chapter 9.) From the graph of Q against V (Figure 23.7b), we can see that

the quantity Q x Vis given by the area under the graph.

The area under a graph of p.d. against charge is equal to work done.

If we apply the same idea to the capacitor graph (Figure 23.7a), then the area under the graph is the
shaded triangle, with an area of base x height. Hence, the work done in charging a capacitor to a
particular p.d. is given by:

W = %QV
Substituting Q = CV into this equation gives two further equations:

W = %C’V2

W = 19

2 C
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Figure 23.7: The area under a graph of voltage against charge gives a quantity of energy. The area in a
shows the energy stored in a capacitor; the area in b shows the energy required to drive a charge
through a resistor.

where W energy stored, Q is the charge on the capacitor, C is the capacitance and V is the potential
difference across the capacitor.

These three equations show the work done in charging up the capacitor. This is equal to the energy
stored by the capacitor, since this is the amount of energy released when the capacitor is discharged.

We can also see from the second formula (W = %CVZ) that the energy W that a capacitor stores
depends on its capacitance C and the potential difference V to which it is charged.

The energy W stored is proportional to the square of the potential difference V (W « V2). It follows that
doubling the charging voltage means that four times as much energy is stored.

KEY EQUATIONS

Work done by charging a capacitor:

W= 1QV
W =1cv?

1@
W=s7

WORKED EXAMPLE

1 A 2000 uF capacitor is charged to a p.d. of 10 V. Calculate the energy stored by the capacitor.
Step 1 Write down the quantities we know:
C = 2000pF
V =10V
Step 2 Write down the equation for energy stored and substitute values:
W = LCV?
= 1 %2000 x107° x 10
= 0.10J

This is a small amount of energy - compare it with the energy stored by a rechargeable battery,
typically of the order of 10 000 J. A charged capacitor will not keep an MP3 player running for any
length of time.




Questions
5 State the quantity represented by the gradient of the straight line shown in Figure 23.7a.
6 The graph of Figure 23.8 shows how V depends on Q for a particular capacitor.
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Figure 23.8: The energy stored by a capacitor is equal to the area under the graph of voltage
against charge.

The area under the graph has been divided into strips to make it easy to calculate the energy stored.
The first strip (which is simply a triangle) shows the energy stored when the capacitor is charged up
to 1.0 V. The energy stored is:

2QV = 1 x1.0mCx10V
= 0.5mJ

a Calculate the capacitance C of the capacitor.

b Copy Table 23.2 and complete it by calculating the areas of successive strips, to show how W
depends on V.

¢ Plot a graph of W against V. Describe the shape of this graph.

Q / mC V/V Area of strip AW / mJ| Sum of areas W/ m]J
1.0 1.0 0.5 0.5
2.0 2.0 1.5 2.0
3.0
4.0

Table 23.2 Data for Question 6.

PRACTICAL ACTIVITY 23.1

Investigating energy stored in a capacitor

If you have a sensitive joulemeter (capable of measuring millijoules, m]), you can investigate the
equation for energy stored. A suitable circuit is shown in Figure 23.9.

The capacitor is charged up when the switch connects it to the power supply. When the switch is
altered, the capacitor discharges through the joulemeter. (It is important to wait for the capacitor to
discharge completely.) The joulemeter will measure the amount of energy released by the capacitor.

By using capacitors with different values of C, and by changing the charging voltage V, you can
investigate how the energy W stored depends on C and V.
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Figure 23.9: With the switch to the left, the capacitor C charges up; to the right, it discharges
through the joulemeter.

Questions

7 Calculate the energy stored in the following capacitors:
a a 5000 uF capacitor charged to 5.0 V
b a 5000 pF capacitor charged to 5.0 V
¢ a 200 pF capacitor charged to 230 V.

8 Which involves more charge, a 100 uF capacitor charged to 200 V or a 200 uF capacitor charged to
100 V? Which stores more energy?

9 A 10 000 pF capacitor is charged to 12 V, and then connected across a lamp rated at ‘12 'V, 36 W’.
a Calculate the energy stored by the capacitor.

b Estimate the time the lamp stays fully lit. Assume that energy is dissipated in the lamp at a steady
rate.

10 In a simple photographic flashgun, a 0.20 F capacitor is charged by a 9.0 V battery. It is then
discharged in a flash of duration 0.01 s. Calculate:

a the charge on and energy stored by the capacitor
b the average power dissipated during the flash

¢ the average current in the flash bulb

d the approximate resistance of the bulb.



23.3 Capacitors in parallel

Capacitors are used in electric circuits to store energy. Situations often arise where two or more
capacitors are connected together in a circuit. In this topic, we will look at capacitors connected in
parallel. The next topic deals with capacitors in series.

When two capacitors are connected in parallel (Figure 23.10), their combined or total capacitance Cigta
is simply the sum of their individual capacitances C; and Cy:

Ciotal = C1 + C2
This is because, when two capacitors are connected together, they are equivalent to a single capacitor

with larger plates. The bigger the plates, the more charge that can be stored for a given voltage, and
hence the greater the capacitance.
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Figure 23.10: Two capacitors connected in parallel are equivalent to a single, larger capacitor.

The total charge Q on two capacitors connected in parallel and charged to a potential difference V is
simply given by:

Q = Ciotal X V
For three or more capacitors connected in parallel, the equation for their total capacitance becomes:

Ctotal =C1+Cy + C3 + ...

Capacitors in parallel: deriving the formula

We can derive the equation for capacitors in parallel by thinking about the charge on the two capacitors.
As shown in Figure 23.11, C; stores charge Q1 and C, stores charge Q,. Since the p.d. across each

capacitor is V, we can write:

Ql = 01V and Qz = 02V
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Figure 23.11: Two capacitors connected in parallel have the same p.d. across them, but different
amounts of charge.

The total charge is given by the sum of these:

Q=01 +Q=C{V+CV



Since V is a common factor:
Q = (Cl + Cz)V

Comparing this with Q = Cy4V gives the required Ciyq1 = C1 + Cy. It follows that for three or more
capacitors connected in parallel, we have:

Ctotal =C1+Cy + C3 + ...

Capacitors in parallel: summary

For capacitors in parallel, the following rules apply:

¢ The p.d. across each capacitor is the same.

* The total charge on the capacitors is equal to the sum of the charges:

Qtotal = Q1 + Q2 + Q3 + ...

* The total capacitance Ciyq; is given by:

Ctotal = Cl + Cz + C3 + ...

Ciotal = C1 + Cy + C3 + ...

The combined capacitance of capacitors in parallel.
You must learn how to derive this equation.

Questions
11 a Calculate the total capacitance of two 100 pF capacitors connected in parallel.
b Calculate the total charge they store when charged to a p.d. of 20 V.

12 A capacitor of capacitance 50 uF is required, but the only values available to you are 10 uF, 20 uF and
100 pF (you may use more than one of each value). How would you achieve the required value by
connecting capacitors in parallel? Give at least two answers.
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23.4 Capacitors in series
In a similar way to the case of capacitors connected in parallel, we can consider two or more capacitors
connected in series (Figure 23.12). The total capacitance Ciqtq Of two capacitors of capacitances C; and
C, is given by:
1 1 4 1
Ciota ~ C1 + Cy

Here, it is the reciprocals of the capacitances that must be added to give the reciprocal of the total
capacitance. For three or more capacitors connected in series, the equation for their total capacitance is:

1 1 11

=—+—+—+..
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Figure 23.12: Two capacitors connected in series.

Capacitors in series: deriving the formula

The same principles apply here as for the case of capacitors in parallel. Figure 23.13 shows the situation.
C; and C, are connected in series, and there is a p.d. V across them. This p.d. is divided (it is shared

between the two capacitors), so that the p.d. across C; is V; and the p.d. across Cy is V5. It follows that:

V=V1+ V3
iy G
0!+ o'l
Vl v}l
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Figure 23.13: Capacitors connected in series store the same charge, but they have different p.d.s
across them.

Now we must think about the charge stored by the combination of capacitors. In Figure 23.13, you will
see that both capacitors are shown as storing the same charge Q. How does this come about? When the
voltage is first applied, charge —Q arrives on the left-hand plate of C;. This repels charge —Q off the
right-hand plate, leaving it with charge +Q. Charge —Q now arrives on the left-hand plate of C5, and this

in turn results in charge +Q on the right-hand plate.

1 1 1 1
=Ftatot

Chotal C1

The combined capacitance of capacitors in series.
You must learn how to derive this equation.

Note that charge is not arbitrarily created or destroyed in this process - the total amount of charge in the
system is constant. This is an example of the conservation of charge.

Notice also that there is a central isolated section of the circuit between the two capacitors. Since this is
initially uncharged, it must remain so at the end. This requirement is satisfied, because there is charge
—Q at one end and +Q at the other. Hence, we conclude that capacitors connected in series store the
same charge. This allows us to write equations for V| and V5:



Vo= g and Vs = &

The combination of capacitors stores charge Q when charged to p.d. V, and so we can write:

Substituting these in V = V; + V, gives:
Q

Ctotal

Q Q
Cancelling the common factor of Q gives the required equation:

1 1 1
Chotal 1 + C

Worked example 2 shows how to use this relationship.

WORKED EXAMPLE

2 Calculate the total capacitance of a 300 uF capacitor and a 600 uF capacitor connected in series.

Step 1 The calculation should be done in two steps; this is relatively simple using a calculator with
1 -1
a = or x - key.

X
Substitute the values into the equation:
am T ta
This gives:
cj,m = 355 + 5%
o = 0.005uF

Step 2 Now take the reciprocal of this value to determine the capacitance in pF:

Notice that the total capacitance of two capacitors in series is less than either of the
individual capacitances.

Using the x~1 key on your calculator, you can also do this calculation in one step:

Crotal = (300™1 + 600~1)~1 = 200 uF

Questions

13 Calculate the total capacitance of three capacitors of capacitances 200 pF, 300 uF and 600 uF,
connected in series.

14 You have a number of identical capacitors, each of capacitance C. Determine the total capacitance
when:

a two capacitors are connected in series
b n capacitors are connected in series

¢ two capacitors are connected in parallel
d n capacitors are connected in parallel.



23.5 Comparing capacitors and resistors

It is helpful to compare the formulae for capacitors in series and parallel with the corresponding formulae
for resistors (Table 23.3).

By 8. B RR R R
G,
LA
=
C3||
Ll

Table 23.3 Capacitors and resistors compared.

Notice that the reciprocal formula applies to capacitors in series but to resistors in parallel. This comes
from the definitions of capacitance and resistance. Capacitance indicates how good a capacitor is at
storing charge for a given voltage, and resistance indicates how bad a resistor is at letting current
through for a given voltage.



23.6 Capacitor networks
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Figure 23.14: Four ways to connect three capacitors.

There are four ways in which three capacitors may be connected together. These are shown in Figure
23.14. The combined capacitance of the first two arrangements (three capacitors in series, three in
parallel) can be calculated using the formulae. The other combinations must be dealt with in a different
way:

» TFigure 23.14a - All in series. Calculate Ciqq) @s in Table 23.3.
» Figure 23.14b - All in parallel. Calculate Ciyq as in Table 23.3.

* Figure 23.14c - Calculate Ciuta for the two capacitors of capacitances C; and Cp, which are
connected in parallel, and then take account of the third capacitor of capacitance C3, which is
connected in series.

* Figure 23.14d - Calculate Ciy, for the two capacitors of capacitances C; and C,, which are
connected in series, and then take account of the third capacitor of capacitance Cj3, which is
connected in parallel.

These are the same approaches as would be used for networks of resistors.

Questions

15 For each of the four circuits shown in Figure 23.14, calculate the total capacitance in uF if each
capacitor has capacitance 100 pF.

16 Given a number of 100 uF capacitors, how might you connect networks to give the following values of

capacitance:
a 400 pF?
b 25 uF?

c 250 puF?

(Note that, in each case, there is more than one correct answer; try to find the answer that requires
the minimum number of capacitors.)

17 You have three capacitors of capacitances 100 pF, 200 pF and 600 pF. Determine the maximum and
minimum values of capacitance that you can make by connecting them together to form a network.
State how they should be connected in each case.

18 Calculate the capacitance in puF of the network of capacitors shown in Figure 23.15.
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Figure 23.15: A capacitor network. For Question 18.

Sharing charge, sharing energy

If a capacitor is charged and then connected to a second capacitor (Figure 23.16), what happens to the
charge and the energy that it stores? Note that, when the capacitors are connected together, they are in
parallel, because they have the same p.d. across them. Their combined capacitance Ciqq) is equal to the

sum of their individual capacitances.

Ci: 0

11
I
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Figure 23.16: Capacitor of capacitance C; is charged and then connected across Cs.

Now we can think about the charge stored, Q. This is shared between the two capacitors; the total
amount of charge stored must remain the same, since charge is conserved. The charge is shared between
the two capacitors in proportion to their capacitances. Now the p.d. can be calculated from V = % and

the energy from W = LCV 2.
If we look at a numerical example, we find an interesting result (Worked example 3).
Figure 23.17 shows an analogy to the situation described in Worked example 3.

Capacitors are represented by containers of water. A wide (high capacitance) container is filled to a
certain level (p.d.). It is then connected to a container with a smaller capacitance, and the levels equalise.
(The p.d. is the same for each.) Notice that the potential energy of the water has decreased, because the
height of its centre of gravity above the base level has decreased. Energy is dissipated as heat, as there is
friction both within the moving water and between the water and the container.

I -ml

Figure 23.17: An analogy for the sharing of charge between capacitors.

WORKED EXAMPLE

3 Consider two 100 mF capacitors. One is charged to 10 V, disconnected from the power supply, and
then connected across the other. Calculate the energy stored by the combination.

Step 1 Calculate the charge and energy stored for the single capacitor.




initial charge @ = VC
= 10x0.10
= 1.0C

initial stored energy = %CV2
= £ x0.10 x 107
= 5.0J

Step 2 Calculate the final p.d. across the capacitors. The capacitors are in parallel and have a total
stored charge of 1.0 C.

Ciotal = C1 + Co = 100 + 100 = 200 mF
The p.d. V can be determined using Q = VC.

Q
V.=<¢

1.0 3
200 X 10

= 50V

This is because the charge is shared equally, with the original capacitor losing half of its charge.

Step 3 Now calculate the total energy stored by the capacitors.
_ 1 2
total energy = SCV
3 X200 x 107 x 5.07
= 2.51J]

The charge stored remains the same, but half of the stored energy is lost. The energy goes to heating
the connecting wires as the electrons migrate between the capacitors.

Questions
19 Three capacitors, each of capacitance 120 uF, are connected together in series. This network is then
connected to a 10 kV supply. Calculate:
a their combined capacitance in pF
b the charge stored
c the total energy stored.

20 A 20 pF capacitor is charged up to 200 V and then disconnected from the supply. It is then connected
across a 5.0 pF capacitor. Calculate:

a the combined capacitance of the two capacitors in pF

b the charge they store

c¢ the p.d. across the combination

d the energy dissipated when they are connected together.

Capacitance of isolated bodies

It is not just capacitors that have capacitance - all bodies have capacitance. Yes, even you have
capacitance! You may have noticed that, particularly in dry conditions, you may become charged up,
perhaps by rubbing against a synthetic fabric. You are at a high voltage and store a significant amount of
charge. Discharging yourself by touching an earthed metal object would produce a spark.

If we consider a conducting sphere of radius r insulated from its surroundings and carrying a charge Q it
will have a potential at its surface of V, where

V:lQ

dmeg T

Since C' = %, it follows that the capacitance of a sphere is C = 4ngr.

Question

21 Estimate the capacitance of the Earth given that it has a radius of 6.4 x 10% m. State any assumptions
you make.






23.7 Charge and discharge of capacitors

In Figure 23.18, the capacitor is charged by the battery when the switch is connected to terminal P. When
first connected to P, a current is observed in the microammeter. The current starts off quite large and
gradually decreases to zero. When connected to terminal Q, the capacitor discharges through the resistor
and a current in the opposite direction is observed. As with the previous current, it starts off large and

gradually falls to zero.
Q
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|

Figure 23.18 A circuit to charge and discharge a capacitor.
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Figure 23.19 A graph showing how the current changes with time when a capacitor discharges through
a resistor.

This shape of this graph it is quite common in sciences and it occurs in different situations - you will come
across it again in radioactive decay in Chapter 29. In this case, it comes from the fact that, as charge
flows off the capacitor, the potential difference reduces and so the current (the charge flowing per unit
time) in the circuit also decreases. In radioactive decay, it occurs because as atoms decay, there are fewer
atoms left to Charles’s law and, therefore, fewer decays per unit time.

This type of decay is called exponential decay and is described by the formula:

x = zoe

where x is the dependent variable, y is the independent variable, k and x( are constants and e is the
exponential function (a naturally occurring number of value 2.7118 28 ...).

Question

22 In the circuit in Figure 23.18, the resistance has a resistance of 2000 Q, the capacitor has a
capacitance of 1000 uF and the battery has an e.m.f. of 12 V.

a Calculate:
i the potential difference across the capacitor when it is fully charged by the battery
ii the charge stored by the capacitor when it is fully charged
iii the current in the resistor when the switch is first connected to terminal Q.

b Explain what happens to the amount of charge stored on the plates in the moments after the
switch is first connected to terminal Q.

¢ Based on your answer to part b, explain what effect this has on:
i the potential difference across the capacitor
ii the current in the resistor.

Once you have worked through Question 22, you should understand why the current gradually reduces: it



reduces because of the current itself, as it takes charge off the plates.

What is the effect of changing the resistance in the circuit? There will be no change in the initial potential
difference across the capacitor, but the initial current through the resistor will be changed. Increased
resistance will mean decreased current, so charge flows off the capacitor plates more slowly and,
therefore, the capacitor will take longer to discharge. Conversely, decreasing the resistance will cause the
capacitor to discharge more quickly.

What is the effect of increasing the capacitance of the capacitor? The initial p.d. across the capacitor is,
again, unchanged. So, with an unchanged resistance, the initial current will be unchanged. However,
there will be more charge on the capacitor and so it will take longer to discharge.

From this, we can see that the time taken for a capacitor to discharge depends on both the capacitance
and the resistance in the circuit. The quantity RC is called the time constant of the circuit. It is written
using the Greek letter tau (z).

7= RC

Time constant for a capacitor discharging.

Question
23 Show that the unit of the time constant (RC) is the second.
The equation for the exponential decay of charge on a capacitor is:

— t
I=hesp (-~ )
where I is the current, I is the initial current, t is time and RC is the time constant.

The current at any time is directly proportional to the potential difference across the capacitor, which in
turn is directly proportional to charge across the plate. The equation also describes the change in the
potential difference and the charge on the capacitor.

So:
V = Vyexp (—Rt—c,)

where Vis the p.d, and V) is the initial p.d.
And:

Q= Qoexp (—47)

where Q is the charge and Q is the initial charge.

KEY EQUATIONS

Exponential decay of charge on a capacitor:

I =1Ijexp (—%)
Q= Qoexp (—45)
V= Viexp (~7)

WORKED EXAMPLE

4 The potential difference across the plates of a capacitor of capacitance 500 pF is 240 V. The
capacitor is connected across the terminals of a 600 Q resistor.

Find the time taken for the current to fall to 0.10 A.

Step 1 Calculate the initial current:
_ Vv

I, = -

240

600

= 0.40A




Step 2 Calculate the time constant:
T = RC
= 600 x 500 x 107
0.30 s
Step 3 Substitute into the equation:
I = Ijexp (—%)
0.10 = 0.40exp (—7%-)

0.30
oo = o (~g3)
0.25 = exp(—555)

Step 4 e comes from the antilog of the natural logarithm (In) such that In (eX) = x
Taking In of both sides:

_ t
. 1
~1.386 = —gk
t = 1.386 x0.30
= 041s
Question

24 A 400 uF capacitor is charged using a 20 V battery. It is connected across the ends of a 600 Q resistor
with 20 V potential difference across its plates.

a Calculate the charge stored on the capacitor.

b Calculate the time constant for the discharging circuit.

¢ Calculate the time it takes the charge on the capacitor to fall to 2.0 mC.

d State the potential difference across the plates when the charge has fallen to 2.0 mC.

In Worked example 3, we showed that when a charged capacitor is connected to an identical uncharged
capacitor, half the energy is dissipated in driving the charge through the circuit and is transformed to
thermal energy. If we had superconducting connectors - ones that conduct electricity without any
energy losses - what would happen? Discuss with a partner.

What did you find satisfying about discussing this problem?




SUMMARY

Capacitors are constructed from two metal sheets (‘plates’), separated by an insulating material. A
capacitor stores equal and opposite amounts of charge on its plates.

For a capacitor, the charge stored is directly proportional to the p.d. between the plates:

Q=VC

Capacitance is the charge stored per unit of p.d.

A farad is a coulomb per volt: 1 F =1 CV~L

Capacitors store energy. The energy W stored at p.d. Vis:

1 1 1@
W_QQV_ECVZ_ET

The formula W = %QV is deduced from the area under a graph of potential difference against
charge.

For capacitors connected in parallel and in series, the combined capacitances are:
parallel: Cigta = C1 + Co + C3 + ...

- 1o 1,11
series: Con = O + G + e + ...

These formulae are derived from conservation of charge and addition of p.d.s.

The graphs for the discharge current, charge stored and potential difference across a capacitor are all
examples of exponential decay.

The time constant for circuits containing capacitance and resistance is: r = CR

The graphs of discharge current, charge stored and potential difference across a capacitor are all of
the form:

Z = z(oexp (—Rt—C)




EXAM-STYLE QUESTIONS

1 A capacitor has a potential difference of 6.0 V across its plates and stores 9.0
m] of energy.

Which row in the table gives the capacitance of the capacitor and the charge

on its plates? [1]
Capacitance / pF Charge / mC
A 500 3.0
B 500 18
C 3000 3.0
D 3000 18
Table 23.3

2 A capacitor in an electronic circuit is designed to slowly discharge through an
indicator lamp.

It is decided that the time taken for the capacitor to discharge needs to be
increased. Four changes are suggested:

1 Connect a second capacitor in parallel with the original capacitor.
2 Connect a second capacitor in series with the original capacitor.
3 Connect a resistor in parallel with the lamp.
4 Connect a resistor in series with the lamp.
Which suggestions would lead to the discharge time being increased? [11
A 1 and 3 only
B 1 and 4 only
C 2 and 3 only
D 2 and 4 only
3 A 470 pF capacitor is connected across the terminals of a battery of e.m.f. 9 V.

Calculate the charge on the plates of the capacitor. 11
4 Calculate the p.d. across the terminals of a 2200 pF capacitor when it has a

charge of 0.033 C on its plates. [11
5 Calculate the capacitance of a capacitor if it stores a charge of 2.0 C when

there is a potential difference of 5000 V across its plates. [11

6 Calculate the energy stored when a 470 uF capacitor has a potential difference
of 12 V across its plates. [11

7 Calculate the energy stored on a capacitor if it stores 1.5 mC of charge when
there is a potential difference of 50 V across it. [11

8 A 5000 pF capacitor has a p.d. of 24 V across its plates.

a Calculate the energy stored on the capacitor. [11

b The capacitor is briefly connected across a bulb and half the charge flows
off the capacitor. Calculate the energy dissipated in the lamp. [31
[Total: 4]

9 A 4700 pF capacitor has a p.d. of 12 V across its terminals. It is connected to a
resistor and the charge leaks away through the resistor in 2.5 s.

a Calculate the energy stored on the capacitor. [1]
b Calculate the charge stored on the capacitor. [1]
¢ Estimate the average current through the resistor. [1]
d Estimate the resistance of the resistor. [2]
e Suggest why the last two quantities can only be estimates. [1]

[Total: 6]

10 An electronics engineer is designing a circuit in which a capacitor of
capacitance of 4700 pF is to be connected across a potential difference of 9.0



V. He has four 4700 pF, 6 V capacitors available. Draw a diagram to show how
the four capacitors could be used for this purpose.

11 Calculate the different capacitances that can be made from three 100 uF
capacitors. For each value, draw the network that is used.

12 This diagram shows three capacitors connected in series with a cell of e.m.f.
1.5V.

Ql||Qz Q:[|Qs Qs||Qe

100 mF 200 mF 600 mF

1.5V

Figure 23.20

a Calculate the charges Qq to Qg on each of the plates.

b Calculate the p.d. across each capacitor.

13

Y]

State one use of a capacitor in a simple electric circuit.

b This is a circuit used to investigate the discharge of a capacitor, and a
graph showing the change in current with time when the capacitor is
discharged.

I'/mA 15,

10{

(8]

—iF -
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t/s

Figure 23.21

i Deduce the resistance R of the resistor.
ii Explain why the current decreases as the capacitor discharges.

iii The charge on the capacitor is equal to the area under the graph.
Estimate the charge on the capacitor when the potential difference
across it is 9.0 V.

iv Calculate the capacitance of the capacitor.

14 The spherical dome on a Van de Graaff generator has a diameter of 40 cm and
the potential at its surface is 5.4 kV.

a i Calculate the charge on the dome.
ii Calculate the capacitance of the dome.

An earthed metal plate is moved slowly towards the sphere but does not touch
it. The sphere discharges through the air to the plate. This graph shows how
the potential at the surface of the sphere changes during the discharge.

[1]

[4]

[5]
[3]
[Total: 8]
[1]

2]
21

121
2]
[Total: 9]

[2]
2]
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