> Chapter 20

Ideal gases

LEARNING INTENTIONS

In this chapter you will learn how to:
* measure amounts of a substance in moles and find the number of particles using molar quantities
* solve problems using the equation of state pV = nRT for an ideal gas

e deduce a relationship between pressure, volume and the microscopic properties of the molecules of
a gas, stating the assumptions of the kinetic theory of gases

* relate the kinetic energy of the molecules of a gas to its temperature and calculate root-mean-
square speeds.

BEFORE YOU START

*  With a classmate, write down what you know about Brownian motion and what it shows about the
molecules in a gas.

* Try to explain to a classmate, in terms of momentum change, why a ball hitting a wall exerts a force
on it.

e List Newton’s laws of motion.

THE IDEA OF A GAS

Figure 20.1 shows a weather balloon being launched. Balloons like this carry instruments high into the
atmosphere, to measure pressure, temperature, wind speed and other variables.

The balloon is filled with helium so that its overall density is less than that of the surrounding air. The
result is an upthrust on the balloon, greater than its weight, so that it rises upwards. As the balloon
moves upwards, the pressure of the surrounding atmosphere decreases so that the balloon expands.
The temperature drops, which tends to make the gas in the balloon shrink. In this chapter, we will look
at the behaviour of gases as their pressure, temperature and volume change.




Figure 20.1: A weather balloon being launched.




20.1 Particles of a gas

We picture the particles of a gas as being fast-moving. They bounce off the walls of their container (and
off each other) as they travel around at high speed (see Figure 20.2). How do we know that these
particles are moving like this?

It is much harder to visualise the particles of a gas than those of a solid, because they move about in such
a disordered way, and most of a gas is empty space. The movement of gas particles was investigated in
the 1820s by a Scottish botanist, Robert Brown. He was using a microscope to look at pollen grains
suspended in water, and saw very small particles moving around inside the water. He then saw the same
motion in particles of dust in the air. It is easier in the laboratory to look at the movement of tiny particles
of smoke in air. The particles are seen to be moving in a random, haphazard and jerky motion that we
believe is caused by them being hit by invisible molecules of water or air around them. The pollen and
dust particles are big enough to see in an ordinary microscope but air molecules are too small to see.
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Figure 20.2: Particles of a gas - collisions with the walls of the container cause the gas’ pressure on the
container. (Particles do not have shadows like this. The shadows are added here to show depth.)

Fast molecules

For air at standard temperature and pressure (STP, —0 °C and 100 kPa), the average speed of the

molecules is about 400 m s~1. At any moment, some are moving faster than this and others more slowly. If
we could follow the movement of a single air molecule, we would find that, some of the time, its speed
was greater than this average; at other times, it would be less. The velocity (magnitude and direction) of
an individual molecule changes every time it collides with anything else.

This value for molecular speed is reasonable. It is comparable to (but greater than) the speed of sound in
air (approximately 330 m s~—! at STP). Very fast-moving particles can easily escape from the Earth’s

gravitational field. The required escape velocity is about 11 km s~!. Since we still have an atmosphere, on
average, the air molecules must be moving much more slowly than this value.



20.2 Explaining pressure

A gas exerts pressure on any surface with which it comes into contact. Pressure is a macroscopic
property, defined as the force exerted per unit area of the surface.

The pressure of the atmosphere at sea level is approximately 100 000 Pa. The surface area of a typical

person is 2.0 m%. Hence the force exerted on a person by the atmosphere is about 200 000 N. This is
equivalent to the weight of about 200 000 apples!

Fortunately, air inside the body presses outwards with an equal and opposite force, so we do not collapse
under the influence of this large force. We can explain the macroscopic phenomenon of pressure by
thinking about the behaviour of the microscopic particles that make up the atmosphere.

Figure 20.3 shows the movement of a single molecule of air in a box. It bounces around inside, colliding
with the various surfaces of the box. At each collision, it exerts a small force on the box. The pressure on
the inside of the box is a result of the forces exerted by the vast number of molecules in the box. Two
factors affect the force, and hence the pressure, that the gas exerts on the box:

¢ the number of molecules that hit each side of the box in one second
¢ the force with which a molecule collides with the wall.

If a molecule of mass m hits the wall head-on with a speed v it will rebound with a speed v in the opposite
direction. The change in momentum of the molecule is 2mv. Since force is equal to rate of change of
momentum, the higher the speed of the molecule the greater the force that it exerts as it collides with the
wall. Hence, the pressure on the wall will increase if the molecules move faster.

If the piston in a bicycle pump is pushed inwards, but the temperature of the gas inside is kept constant,
then more molecules will hit the piston in each second, but each collision will produce the same force
because the temperature and therefore the average speed of the molecules is the same. The increased
rate of collisions alone means that the force on the piston increases and thus the pressure rises. If the
temperature of the gas in a container rises then the molecules move faster and hit the sides faster and
more often; both of these factors cause the pressure to rise.

Figure 20.3: The path of a single molecule in an otherwise empty box.

Questions

1 State and explain, in terms of the kinetic model (the movement of molecules), what happens to the
pressure inside a tyre when more molecules at the same temperature are pumped into the tyre.

2 Explain, using the kinetic model, why a can containing air may explode if the temperature rises.



20.3 Measuring gases

We are going to picture a container of gas, such as the box shown in Figure 20.4. There are four
properties of this gas that we might measure: pressure, temperature, volume and mass. In this chapter,
you will learn how these quantities are related to one another.

Figure 20.4: A gas has four measurable properties, which are all related to one another: pressure,
temperature, volume and mass.

Pressure

This is the normal force exerted per unit area by the gas on the walls of the container. We saw in Chapter
7 that molecular collisions with the walls of the container produce a force and thus create a pressure.

Pressure is measured in pascals, Pa (1 Pa=1N m™2),

Temperature

This might be measured in °C, but in practice it is more useful to use the thermodynamic (Kelvin) scale of
temperature. You should recall how these two scales are related:

T (K)=6(°C) + 273.15

Volume

This is a measure of the space occupied by the gas. Volume is measured in m3.

Mass

This is measured in g or kg. In practice, it is more useful to consider the amount of gas, measured in
moles. The mole is the SI unit of substance, not a unit of mass.

We have seen in Chapter 15 that each atom or molecule has a mass in unified atomic mass units (u),
approximately equal to the number of nucleons (protons and neutrons) it contains.

We have also seen that 1 u = 1.66 x 10727 kg.
Thus, each atom of carbon-12 has a mass:

12u = 12x1.66 x 10 *"kg
= 1.99 x 10" *kg

So, 0.012 kg of carbon-12 contains % = 6.02 x 10%® molecules.

A mole of any substance (solid, liquid or gas) contains a standard number of particles (molecules or
atoms). This number is known as the Avogadro constant, N,. The value for N, is 6.02 x 1023 mol~1. We

can easily determine the number of atoms in a sample if we know how many moles it contains. For
example:

2.0 mol of helium contains
2.0 x 6.02 x 1023 = 1.20 x 1024 atoms
10 mol of carbon contains

10 x 6.02 x 1023 = 6.02 x 1024 atoms



We will see later that, if we consider equal numbers of moles of two different gases under the same
conditions, their physical properties are the same.

Questions

3 The mass of one atom of carbon-12 is 12 u. Determine:

the mass of one atom of carbon-12 in kg, given that 1 u = 1.66 x 10727 kg
the number of atoms and the number of moles in 54 g of carbon

the number of atoms in 1.0 kg of carbon.

Calculate the mass in grams of a single atom of uranium-235 of mass 235 u.
A small pellet of uranium-235 has a mass of 20 mg. For this pellet, calculate:
i the number of uranium atoms

ii the number of moles.

S 60T 9

5 ‘It can be useful to recall that 1.0 kg of ordinary matter contains in the order of 1026 atoms.” Making
suitable estimates, test this statement.



20.4 Boyle’s law

This law relates the pressure p and volume V of a gas. It was discovered in 1662 by Robert Boyle.

If a gas is compressed at constant temperature, its pressure increases and its volume decreases. A
decrease in volume occupied by the gas means that there are more particles per unit volume and more
collisions per second of the particles with unit area of the wall. Because the temperature is constant, the
average speed of the molecules does not change. This means that each collision with the wall involves the
same change in momentum, but with more collisions per second on unit area of the wall there is a greater
rate of change of momentum and, therefore, a larger pressure on the wall.

Pressure and volume are inversely related.
We can write Boyle’s law as:

The pressure exerted by a fixed mass of gas is inversely proportional to its volume, provided the
temperature of the gas remains constant.

Note that this law relates two variables, pressure and volume, and it requires that the other two, mass
and temperature, remain constant.

Boyle’s law can be written as:

or simply:
pV = Constant

We can also represent Boyle’s law as a graph, as shown in Figure 20.5. A graph of p against 1 is a
straight line passing through the origin, showing direct proportionality.
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Figure 20.5: Graphical representations of the relationship between pressure and volume of a gas
(Boyle’s law).

For solving problems, you may find it more useful to use the equation in this form:
p1V1 = p2V2

Here, p; and V; represent the pressure and volume of the gas before a change, and p; and V; represent
the pressure and volume of the gas after the change. Worked example 1 shows how to use this equation.

WORKED EXAMPLE

1 A cylinder contains 0.80 m3 of nitrogen gas at a pressure of 1.2 atmosphere (1 atm = 1.01 x 105
Pa). A piston slowly compresses the gas to a pressure of 6.0 atm. The temperature of the gas
remains constant. Calculate the final volume of the gas.

Note from the question that the temperature of the gas is constant, and that its mass is fixed
(because it is contained in a cylinder). This means that we can apply Boyle’s law.

Step 1 We are going to use Boyle’s law in the form p;V; = p,V,. Write down the quantities that you
know, and that you want to find out.

p1 =12atm V; = 0.80 m?
po =6.0atm Vo =7

Note that we don’t need to worry about the particular units of pressure and volume being used




here, so long as they are the same on both sides of the equation. The final value of V;, will be in dm3

because V; is in m3.

Step 2 Substitute the values in the equation, rearrange and find V;:

Vi = pVs
1.2x0.8 = 6.0xV,
_ 1.2x0.8
Vo = 6.0
Vo = 0.16 m?

So the volume of the gas is reduced to 0.16 m3.

The pressure increases by a factor of 5, so the volume decreases by a factor of 5.

Question

6 A balloon contains 0.04 m3 of air at a pressure of 120 kPa. Calculate the pressure required to reduce
its volume to 0.025 m3 at constant temperature.



20.5 Changing temperature

Boyle’s law requires that the temperature of a gas is fixed. What happens if the temperature of the gas is
allowed to change? Figure 20.6 shows the results of an experiment in which a fixed mass of gas is cooled
at constant pressure. The gas contracts; its volume decreases.
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Figure 20.6: The volume of a gas decreases as its temperature decreases.

This graph does not show that the volume of a gas is proportional to its temperature on the Celsius scale.
If a gas contracted to zero volume at 0 °C, the atmosphere would condense on a cold day and we would
have a great deal of difficulty in breathing! However, the graph does show that there is a temperature at
which the volume of a gas does, in principle, shrink to zero. Looking at the lower temperature scale on
the graph, where temperatures are shown in kelvin (K), we can see that this temperature is 0 K, or
absolute zero. (Historically, this is how the idea of absolute zero first arose.)

We can represent the relationship between volume V and thermodynamic temperature T as:
VT
or simply:

% = constant

Note that this relationship only applies to a fixed mass of gas and to constant pressure.

This relationship is an expression of Charles’s law, named after the French physicist Jacques Charles,
who in 1787 experimented with different gases kept at constant pressure.

If we combine Boyle’s law and Charles’s law, we can arrive at a single equation for a fixed mass of gas:

vV
T = constant
Shortly, we will look at the constant quantity that appears in this equation, but first we will consider the

extent to which this equation applies to real gases.

14
pT = constant

Fixed mass of gas.

Real and ideal gases

The relationships between p, V and T that we have considered are based on experimental observations of
gases such as air, helium, nitrogen and so on, at temperatures and pressures around room temperature
and pressure. In practice, if we change to more extreme conditions, such as low temperatures or high
pressures, gases start to deviate from these laws as the gas atoms exert significant electrical forces on
each other. For example, Figure 20.7 shows what happens when nitrogen is cooled down towards
absolute zero. At first, the graph of volume against temperature follows a good straight line. However, as



it approaches the temperature at which it condenses, it deviates from ideal behaviour and at 77 K it
condenses to become liquid nitrogen.
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Figure 20.7: A real gas (in this case, nitrogen) deviates from the behaviour predicted by Charles’s law
at low temperatures.

Thus, we have to attach a condition to the relationships discussed earlier. We say that they apply to an
ideal gas.

When we are dealing with real gases, we have to be aware that their behaviour may be significantly
different from the ideal gas.

An ideal gas is thus one for which we can apply the equation:

% = Constant for a fixed mass of gas



20.6 Ideal gas equation

So far, we have seen how p, V and T are related. It is possible to write a single equation relating these
quantities that takes into account the amount of gas being considered.

We can write the equation in the following form:

pV = nRT
where n is the amount (number of moles) of an ideal gas.
Or in the form:

pV = NkT

where N is the number of molecules and k is the Boltzmann constant described later in topic 20.8.

This equation is called the equation of state for an ideal gas (or the ideal gas equation). It relates all
four of the variable quantities discussed at the beginning of this chapter. The constant of proportionality
R is called the universal molar gas constant. Its experimental value is:

R=8.31]mol 1K1

Note that it doesn’t matter what gas we are considering-it could be a very ‘light’ gas like hydrogen, or a
much ‘heavier’ one like carbon dioxide. So long as it is behaving as an ideal gas, we can use the same
equation of state with the same constant R.

equation of state:

pV = nRT or pV = NkT

Calculating the number n of moles

Instead of knowing the mass of one molecule in unified atomic mass units, sometimes we may be given
the molar mass (the mass of one mole) and the mass of gas we are concerned with, to find how many
moles are present. To do this, we use the relationship:

mass
number of moles = (&)

molar mass(g mol_l)
For example: How many moles are there in 1.6 kg of oxygen?

molar mass of oxygen-16 = 32 g mol~!

1600 g
32 g mol !

= 50 mol

number of moles =

(Note that this tells us that there are 50 moles of oxygen molecules in 1.6 kg of oxygen. An oxygen
molecule consists of two oxygen atoms - its formula is O, - so 1.6 kg of oxygen contains 100 moles of

oxygen atoms.)
Now look at Worked examples 2 and 3.

WORKED EXAMPLE

2 Calculate the volume occupied by one mole of an ideal gas at room temperature (20 °C) and
pressure (1.013 x 105 Pa).

Step 1 Write down the quantities given.
p=1.013x10Pa n=1.0
T =293 K
Hint: Note that the temperature is converted to kelvin.

Step 2 Substituting these values in the equation of state gives:




__ nRT
V = P

1x8.31x293
1.103x10°

= 0.0240 m*®
= 2.40 x 10 ?m?
= 24.0 dm®
Hint: I dm = 0.1 m; hence 1 dm3 = 10=3 m3.

This value, the volume of one mole of gas at room temperature and pressure, is well worth
remembering. It is certainly known by most chemists.

3 A car tyre contains 0.020 m3 of air at 27 °C at a pressure of 3.0 x 10° Pa. Calculate the mass of the
air in the tyre. (Molar mass of air = 28.8 g mol~1.)

Step 1 Here, we need first to calculate the number of moles of air using the equation of state. We
have:
p=30x10°Pa V=0.02m3 T=27°C=2300K
Hint: Don’t forget to convert the temperature to kelvin.

So, from the equation of state:
i %4
RT

8.31x300

= 2.41 mol

Step 2 Now we can calculate the mass of air:

n =

mass = number of moles X molar mass
mass = 2.41 x 28.8=69.4g=69¢g

Questions

For the questions that follow, you will need the following value:

R=28.31]Jmol 1 K™!

7 At what temperature (in K) will 1.0 mol of a gas occupy 1.0 m3 at a pressure of 1.0 x 10% Pa?

8 Nitrogen consists of molecules N5. The molar mass of nitrogen is 28 g mol~!. For 100 g of nitrogen,
calculate:
a the number of moles
b the volume occupied at room temperature and pressure (20 °C; 1.01 x 105 Pa).

9 Calculate the volume of 5.0 mol of an ideal gas at a pressure of 1.0 x 10° Pa and a temperature of 200
°C.

10 A sample of gas contains 3.0 x 1024 molecules. Calculate the volume of the gas at a temperature of
300 K and a pressure of 120 kPa.

11 At what temperature would 1.0 kg of oxygen occupy 1.0 m3 at a pressure of 1.0 x 105 Pa? (Molar
mass of Oy = 32 g mol~1))

12 A cylinder of hydrogen has a volume of 0.100 m3. Its pressure is found to be 20 atmospheres at 20 °C.
a Calculate the mass of hydrogen in the cylinder.
b If it were instead filled with oxygen to the same pressure, how much oxygen would it contain?

(Molar mass of H, = 2.0 g mol~1; molar mass of O, = 32 g mol~1;

1 atmosphere = 1.01 x 10° Pa.)



20.7 Modelling gases: the kinetic model

In this chapter, we are concentrating on the macroscopic properties of gases (pressure, volume,
temperature). These can all be readily measured in the laboratory. The equation:

% = constant
is an empirical relationship. In other words, it has been deduced from the results of experiments. It gives
a good description of gases in many different situations. However, an empirical equation does not explain
why gases behave in this way. An explanation requires us to think about the underlying nature of a gas
and how this gives rise to our observations.

A gas is made of particles (atoms or molecules). Its pressure arises from collisions of the particles with
the walls of the container; more frequent or harder collisions give rise to greater pressure. Its
temperature indicates the average kinetic energy of its particles; the faster they move, the greater their
average kinetic energy and the higher the temperature.

The kinetic theory of gases is a theory that links these microscopic properties of particles (atoms or
molecules) to the macroscopic properties of a gas. Table 20.1 shows the assumptions on which the theory
is based.

On the basis of these assumptions, it is possible to use Newtonian mechanics to show that pressure is
inversely proportional to volume (Boyle’s law), volume is directly proportional to thermodynamic (kelvin)
temperature (Charles’s law), and so on. The theory also shows that the particles of a gas have a range of
speeds - some move faster than others.

Learn the four assumptions of the kinetic theory shown in Table 20.1.

Assumption Explanation/comment

A gas contains a large number of particles (atoms | Kinetic energy cannot be lost. The internal energy
or molecules) moving at random that collide of the gas is the total kinetic energy of the
elastically with the walls and with each other. particles.

The forces between particles are negligible, except | If the particles attracted each other strongly over
during collisions. long distances, they would all tend to clump
together in the middle of the container.

The volume of the particles is negligible compared | When a liquid boils to become a gas, its particles

to the volume occupied by the gas. become much farther apart.
The time of collision by a particle with the The molecules can be considered to be hard
container walls is negligible compared with the spheres.

time between collisions.

Table 20.1: The basic assumptions of the kinetic theory of gases.

The kinetic theory has proved to be a very powerful model. It convinced many physicists of the existence
of particles long before it was ever possible to visualise them.

Molecules in a box

We can use the kinetic model to deduce an equation that relates the macroscopic properties of a gas
(pressure, volume) to the microscopic properties of its molecules (mass and speed). We start by picturing
a single molecule in a cube-shaped box of side I (Figure 20.8). This molecule has mass m, and is moving
with speed c parallel to one side of the box (c is not the speed of light in this case). It rattles back and
forth, colliding at regular intervals with the ends of the box and thereby contributing to the pressure of
the gas. We are going to work out the pressure this one molecule exerts on one end of the box and then
deduce the total pressure produced by all the molecules.
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Figure 20.8: A single molecule of a gas, moving in a box.

KEY EQUATIONS

£ __ change in momentum
orce = time taken
_  Amw
Fo= t
Pressure = force
area
= £
P = A
Note: you need to be able to derive the final equation yourself.

You need to read through the proof carefully as you will need to be able to derive the final equation
yourself.

The stages involved in this calculation are:

1. Find the change in momentum as a single molecule hits a wall at 90°.

2. Calculate the number of collisions per second by the molecule on a wall.
3. Find the change in momentum per second.

4. Find the pressure on the wall.

Consider the effect of having three directions in which the molecule can move.
As you go through the proof, see for yourself where each stage starts and finishes.

Consider a collision in which the molecule strikes side ABCD of the cube. It rebounds elastically in the
opposite direction, so that its velocity is —c. Its momentum changes from mc to —mc. The change in
momentum arising from this single collision is thus:

change in momentum = —mec— (+mc)
= —mc—mc= —2mc
Between consecutive collisions with side ABCD, the molecule travels a distance of 21 at speed c. Hence:

time between collisions with side ABCD = %l

Now we can find the force that this one molecule exerts on side ABCD, using Newton's second law of
motion. This says that the force produced is equal to the rate of change of momentum:

change in momentum
force =

time taken
2mc
2
c
mc?

- T

(We use +2mc because now we are considering the force of the molecule on side ABCD, which is in the
opposite direction to the change in momentum of the molecule.)

The area of side ABCD is I2. From the definition of pressure, we have:



pressurep =

This is for one molecule, but there is a large number N of molecules in the box. Each has a different

velocity, and each contributes to the pressure. We write the average value of ¢Z as <c?>, and multiply by
N to find the total pressure:

Nm<c?>

p=""

But this assumes that all the molecules are travelling in the same direction and colliding with the same
pair of opposite faces of the cube. In fact, they will be moving in all three dimensions equally.

If there are components ¢y, ¢y and ¢, of the velocity in the x-, y- and 2- directions then c2=c + cy2 +
c,2. There is nothing special about any particular direction and so <cy%> = <cy2> = <c,2> and
<el>=1l<d? >,

The equation for pressure worked out above involved just the component of the velocity in the x-direction
and if ¢ is the actual speed of the particle then we need to divide by 3 to find the pressure exerted.

2
p— % ( le<3c > )
Here, I3 is equal to the volume V of the cube, so we can write:
p:%(NTm) <ct> or pV=%Nm<c2>
(Notice that, in the second form of the equation, we have the macroscopic properties of the gas -

pressure and volume - on one side of the equation and the microscopic properties of the molecules on the
other side.)

Pressure of an ideal gas:

N
p=3(8F) <> or pV = Nm<c* >

Finally, the quantity Nm is the mass of all the molecules of the gas, and this is simply equal to the mass M
of the gas. So NT’" is equal to the density p of the gas, and we can write:

p=3p<c>

So the pressure of a gas depends only on its density and the mean square speed of its molecules.

A plausible equation?

It is worth thinking a little about whether the equation p = (22 ) < c? > seems to make sense. It should
be clear to you that the pressure is proportional to the number of molecules, N. More molecules mean
greater pressure. Also, the greater the mass of each molecule, the greater the force it will exert during a
collision.

The equation also suggests that pressure p is proportional to the average value of the speed squared. This
is because, if a molecule is moving faster, not only does it strike the container harder, but it also strikes
the container more often.

The equation suggests that the pressure p is inversely proportional to the volume occupied by the gas.
Here, we have deduced Boyle’s law. If we think in terms of the kinetic model, we can see that if a mass of
gas occupies a larger volume, the frequency of collision between the molecules and unit area of wall
decreases. The equation shows us not just that pressure will be lower but that it is inversely proportional
to volume.

These arguments should serve to convince you that the equation is plausible; this sort of argument cannot
prove the equation.



Questions
13 Check that the SI base units on the left-hand side of the equation:

p= () <>

are the same as those on the right-hand side.
14 The quantity Nm is the total mass of the molecules of the gas, i.e. the mass of the gas. At room
temperature, the density of air is about 1.29 kg m~2 at a pressure of 10° Pa.
a  Use these figures to deduce the value of <c¢?> for air molecules at room temperature.
b Find a typical value for the speed of a molecule in the air by calculating v/< ¢2 >. How does this
compare with the speed of sound in air, approximately 330 m s~1?



20.8 Temperature and molecular kinetic energy

Now we can compare the equation p = %(NT’") < ¢% > with the ideal gas equation pV = nRT. The left-
hand sides are the same, so the two right-hand sides must also be equal:

%Nm < 2 >=nRT

We can use this equation to tell us how the absolute temperature of a gas (a macroscopic property) is
related to the mass and speed of its molecules. If we focus on the quantities of interest, we can see the
following relationship:

3nRT

2 o
m< ¢t >= ~

The quantity & = N, is the Avogadro constant, the number of particles in 1 mole. So:

2 o _ 3BT
m<ct >= N,

It is easier to make sense of this if we divide both sides by 2, to get the familiar expression for kinetic
energy:

1 2 __ 3RT
277’7,<C >= 5N,

The quantity - is defined as the Boltzmann constant, k. Its value is 1.38 x 10723 J K~1. Substituting k
in place of % gives

kinetic energy = %m <ct>= %kT

This is the average kinetic energy E of a molecule in the gas, and since k is a constant, the
thermodynamic temperature T is proportional to the average kinetic energy of a molecule.

Boltzmann constant:

The mean translational kinetic energy of an atom (or molecule) of an ideal gas is proportional to the
thermodynamic temperature.

It is easier to recall this as:

mean translational kinetic energy of atom « T

mean translational kinetic energy of atom « T

We need to consider two of the terms in this statement. First, we talk about translational kinetic energy.
This is the energy that the molecule has because it is moving from one point in space to another; a
molecule made of two or more atoms may also spin or tumble around, and is then said to have rotational
kinetic energy - see Figure 20.9.

Figure 20.9: a A monatomic molecule has only translational kinetic energy. b A diatomic molecule can
have both translational and rotational kinetic energy.

Second, we talk about mean (or average) kinetic energy. There are two ways to find the average kinetic
energy (k.e.) of a molecule of a gas. Add up all the kinetic energies of the individual molecules of the gas



and then calculate the average k.e. per molecule. Alternatively, watch an individual molecule over a
period of time as it moves about, colliding with other molecules and the walls of the container and
calculate its average k.e. over this time. Both should give the same answer.

The Boltzmann constant is an important constant in physics because it tells us how a property of
microscopic particles (the kinetic energy of gas molecules) is related to a macroscopic property of the gas
(its absolute temperature). That is why its units are joules per kelvin (J K~1). Its value is very small (1.38
x 10723 J K~1) because the increase in kinetic energy in J of a molecule is very small for each kelvin
increase in temperature.

It is useful to remember the equation linking kinetic energy with temperature as ‘average k.e. is three-
halves kT".

kinetic energy (of a molecule) = %kT

Questions

15 The Boltzmann constant k is equal to A_}i\ From values of R and N,, show that k has the value 1.38 x
10723 K-L.

16 Calculate the mean translational k.e. of atoms in an ideal gas at 27 °C.

17 The atoms in a gas have a mean translational k.e. equal to 5.0 x 10~21 J. Calculate the temperature of
the gas in K and in °C.

The root-mean-square speed

You may have wondered how the mean-square speed < ¢? > compares with the mean speed < c¢>.

The exact relationship depends on the distribution of the speeds of the molecules. If all the molecules
have the same speed, then < ¢ >= /< ¢2 >.

But is this always the case?

Imagine three molecules with speeds 10, 20 and 30 m s~!; (very low speeds for molecules, but easier for
our calculations!).

Their mean speed < ¢ >= w =20ms!
Their square speeds are 102, 202 and 302.
So, their mean-square speed
10%420% 4302
< c2 >= w = 467 mzs_2

3

In this case, v/< ¢2 > = 22 m s~ 1, which is not the same as the mean speed.

Similarly, the mean of the square of the speeds < ¢2 > = 467 m?2 s~2 is not the same as the square of the
mean of the speeds (< ¢ >)? = 400 m? s~2 in the example.

In general, the values for < ¢ > and v/ < ¢2 > are similar but, because they are not the same, we define a
special quantity called the root-mean-square speed ¢y, 5.

This is the square root of the mean-square-speed; that is:

Crms = V< >

In the example, for the three molecules, ¢, ¢ = 22 m s™1.

Crms = V< c? >

Root-mean-square speed, where ¢, s is the root of the mean square
speed.




Questions
18 Four molecules have speeds 200, 400, 600 and 800 m s~!. Calculate:
a their mean speed < c>
b the square of their mean speed < ¢>2
€ their mean-square speed < c2 >
d their root-mean-square speed ¢y, g -

19 Calculate the root-mean square speed of the molecules of hydrogen at 20 °C given that each molecule
of hydrogen has mass 3.35 x 10727 kg.

Mass, kinetic energy and temperature

Since mean k.e. « T, it follows that if we double the thermodynamic temperature of an ideal gas (for
example, from 300 K to 600 K), we double the mean k.e. of its molecules. It doesn’t follow that we have
doubled their speed; because k.e. « v2, their mean speed has increased by a factor of v2.

Air is a mixture of several gases: nitrogen, oxygen, carbon dioxide, etc. In a sample of air, the mean k.e. of
the nitrogen molecules is the same as that of the oxygen molecules and that of the carbon dioxide
molecules. This comes about because they are all repeatedly colliding with one another, sharing their
energy. Carbon dioxide molecules have greater mass than oxygen molecules; since their mean
translational k.e. is the same, it follows that the carbon dioxide molecules move more slowly than the
oxygen molecules.

Questions

20 Show that, if the mean speed of the molecules in an ideal gas is doubled, the thermodynamic
temperature of the gas increases by a factor of four.

21 A fixed mass of gas expands to twice its original volume at a constant temperature. How do the
following change?

a the pressure of the gas
b the mean translational kinetic energy of its molecules.
22 Air consists of molecules of oxygen (molar mass = 32 g mol~!) and nitrogen (molar mass = 28 g mol

—1). Calculate the mean translational k.e. of these molecules in air at 20 °C. Use your answer to
calculate the root-mean-square speed of each type of molecule.

23 Show that the change in the internal energy of one mole of an ideal gas per unit change in
temperature is always a constant. What is this constant?

REFLECTION

Without looking at your textbook, make a list of the kinetic theory equations and write down what each
term in the equations means.

Write out a proof on your own of the main kinetic theory equation using momentum change and
Newton’s laws.

Write out the assumptions in your own words.
Show how kinetic theory relates temperature and molecular speed.
What things might you want more help with?




SUMMARY

For an ideal gas:

v
p? = constant

One mole of any substance contains N particles (atoms or molecules):

N, = Avogadro constant = 6.02 x 1023 mol~!

The equation of state for an ideal gas is:

pV = nRT for n moles. pV = NRT for N molecules

There are four assumptions of the kinetic theory:

1. Molecules move at random, colliding elastically with the walls.

2. The volume of the molecules is small compared to the volume of the container.
3. There are no forces between atoms in the gas.

4. The time of each collision is small compared to the time between collisions.

From the kinetic model of a gas, we can deduce the relationship:

pV = LNm < ¢? > where < c¢? > is the mean-square speed of the molecules.

The mean translational kinetic energy E of a particle (atom or molecule) of an ideal gas is proportional
to the thermodynamic temperature T:

— 1 2 ~— 3
E—5m<c —2]{5T

The root-mean-sqare speed is the square root of the mean square speed of the molecules:

Crms = V<2 >




EXAM-STYLE QUESTIONS

1 A gas is enclosed inside a cylinder that is fitted with a freely moving piston.

The gas is initially in equilibrium with a volume V; and a pressure p. The gas is

then cooled slowly. The piston moves into the cylinder until the volume of the
gas is reduced to V; and the pressure remains at p.

What is the work done on the gas during this cooling? [1]1
A %p (V2 — Vl)
B p(Vy; =Vy)
1
C sp(Va+W)
D p(V2 + Vl)

2 An ideal gas is made to expand slowly at a constant temperature.
Which statement is correct? [11
A The heat energy transferred to the gas is zero.

B The internal energy of the gas increases.
C The work done by the gas is equal to the heat energy added to it.
D The work done by the gas is zero.
3 a State how many atoms there are in:
i a mole of helium gas (a molecule of helium has one atom) [1]
ii a mole of chlorine gas (a molecule of chlorine has two atoms) [1]
iii a kilomole of neon gas (a molecule of neon has one atom). [1]
b A container holds four moles of carbon dioxide of molecular formula CO,.
Calculate:
i the number of carbon dioxide molecules there are in the container [11
ii the number of carbon atoms there are in the container 11
iii the number of oxygen atoms there are in the container. [1]
[Total: 6]
4 A bar of gold-197 has a mass of 1.0 kg. Calculate:
a the mass of one gold atom in kg. [11
b the number of gold atoms in the bar [11
¢ the number of moles of gold in the bar. [21
(An atom of gold contains 197 nucleons and has a mass of 197 u.)
[Total: 4]
53 A cylinder holds 140 m3 of nitrogen at room temperature and pressure. Moving
slowly, so that there is no change in temperature, a piston is pushed to reduce
the volume of the nitrogen to 42 m3.
a Calculate the pressure of the nitrogen after compression. [2]
b Explain the effect on the temperature and pressure of the nitrogen if the
piston is pushed in very quickly. [11
[Total: 3]
6 The atmospheric pressure is 100 kPa, equivalent to the pressure exerted by a
column of water 10 m high. A bubble of oxygen of volume 0.42 cm? is released
by a water plant at a depth of 25 m. Calculate the volume of the bubble when it
reaches the surface. State any assumptions you make. [41
7 A cylinder contains 4.0 x 1072 m3 of carbon dioxide at a pressure of 4.8 x 10>
Pa at room temperature.
Calculate:
a the number of moles of carbon dioxide [21
b the mass of carbon dioxide. [21

(Molar mass of carbon dioxide = 44 g or one molecule of carbon dioxide



has mass 44 u.)

Calculate the volume of 1 mole of ideal gas at a pressure of 1.01 x 10° Pa and

at a temperature of 0 °C.

A vessel of volume 0.20 m3 contains 3.0 x 1026 molecules of gas at a

temperature of 127 °C. Calculate the pressure exerted by the gas on the vessel
walls.

10 a

Calculate the root-mean-square speed of helium molecules at room
temperature and pressure. (Density of helium at room temperature and

pressure = 0.179 kg m~3.)

Compare this speed with the average speed of air molecules at the same
temperature and pressure.

11 A sample of neon is contained in a cylinder at 27 °C. Its temperature is raised

to 243 °C.

a Calculate the kinetic energy of the neon atoms at:
i 27°C
ii 243 °C.

Calculate the ratio of the speeds of the molecules at the two temperatures.

12 A truck is to cross the Sahara desert. The journey begins just before dawn
when the temperature is 3 °C. The volume of air held in each tyre is 1.50 m3
and the pressure in the tyres is 3.42 x 10° Pa.

a

Explain how the air molecules in the tyre exert a pressure on the tyre
walls.

Calculate the number of moles of air in the tyre.
By midday the temperature has risen to 42 °C.

i Calculate the pressure in the tyre at this new temperature. You may
assume that no air escapes and the volume of the tyre is unchanged.

ii Calculate the increase in the average translational kinetic energy of an

air molecule due to this temperature rise.

13 The ideal gas equation is pV = LNm < ¢? >.

a
b

14 a

State the meaning of the symbols N, m and < c2 >.

A cylinder of helium-4 contains gas with volume 4.1 x 10% cm3 at a

pressure of 6.0 x 10° Pa and a temperature of 22 °C. You may assume
helium acts as an ideal gas and that a molecule of helium-4 contains 4

nucleons, each of mass 1.66 x 10727 kg.

Determine:

i the amount of gas in mol

ii the number of molecules present in the gas
iii the root-mean-square speed of the molecules.

State what is meant by an ideal gas.

A cylinder contains 500 g of helium-4 at a pressure of 5.0 x 10% Pa and at a
temperature of 27 °C. You may assume that the molar mass of helium-4 is
4.0 g.

Calculate:

i the number of moles of helium the cylinder holds

ii the number of molecules of helium the cylinder holds
iii the volume of the cylinder.

[Total: 4]

[2]

[31

[31

[21
[Total: 5]
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[Total: 6]
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[31
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[Total: 10]
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