SELF-EVALUATION CHECKLIST

After studying the chapter, complete a table like this:
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describe laboratory methods for 1.1
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use vector addition to add and subtract 1.6, 1.7
vectors that are in the same plane.




> Chapter 2

Accelerated motion

LEARNING INTENTIONS

In this chapter you will learn how to:

e define acceleration

* draw and interpret graphs of speed, velocity and acceleration

* calculate displacement from the area under a velocity-time graph

* calculate velocity and acceleration using gradients of a displacement-time graph and a velocity-
time graph

* derive and use the equations of uniformly accelerated motion

* describe an experiment to measure the acceleration of free fall, g

» use perpendicular components to represent a vector

» explain projectile motion in terms of uniform velocity and uniform acceleration.

BEFORE YOU START

*  Write down definitions of speed and velocity.

*  Write a list of all the vectors that you know. Why are some quantities classed as vectors?

QUICK OFF THE MARK
The cheetah (Figure 2.1) has a maximum speed of more than 30 m s~! (108 km/h). A cheetah can reach
20 m s~! from a standing start in just three or four strides, taking only two seconds.

A car cannot increase its speed as rapidly but on a long straight road it can easily travel faster than a
cheetah.

How do you think such measurements can be made? What apparatus is needed?




Figure 2.1: The cheetah is the world’s fastest land animal. Its acceleration is impressive, too.




2.1 The meaning of acceleration

In everyday language, the term accelerating means ‘speeding up’. Anything whose speed is increasing is
accelerating. Anything whose speed is decreasing is decelerating.

To be more precise in our definition of acceleration, we should think of it as changing velocity. Any object
whose speed is changing or which is changing its direction has acceleration. Because acceleration is
linked to velocity in this way, it follows that it is a vector quantity.

Some examples of objects accelerating are shown in Figure 2.2.

A car speeding up as

it leaves the town. The
driver presses on the
accelerator pedal to
increase the car’s velocity.

A car setting off from

the traffic lights. There is
an instant when the car
is both stationary and
accelerating. Otherwise it
would not start moving.

Acartravelling round a
bend at a steady speed.
The car’s speed is
constant, but its velocity
is changing as it changes
direction.

Aball being hit by a
tennis racket. Both the
ball’s speed and direction
are changing. The ball’s
velocity changes.

Astone dropped over

a cliff. Gravity makes the
stone go faster and faster.
The stone accelerates
asit falls.

Figure 2.2: Examples of objects accelerating.




2.2 Calculating acceleration

The acceleration of something indicates the rate at which its velocity is changing. Language can get
awkward here. Looking at the sprinter in Figure 2.3, we might say, ‘The sprinter accelerates faster than
the car.” However, ‘faster’ really means ‘greater speed’. It is better to say, ‘The sprinter has a greater
acceleration than the car.’

Acceleration is defined as follows:

acceleration = rate of change of velocity

. change in velocity
average acceleration = ———>

time taken
So to calculate acceleration a, we need to know two quantities - the change in velocity Av and the time
taken At:

_ Av
@= A
Sometimes this equation is written differently. We write u for the initial velocity and v for the final velocity
(because u comes before v in the alphabet). The moving object accelerates from u to v in a time t (this is
the same as the time represented by At in the equation). Then the acceleration is given by the equation:

START time=1s

time=2s time=3s

Figure 2.3: The sprinter has a greater acceleration than the car, but her top speed is less.

You must learn the definition of acceleration. It can be put in words or symbols. If you use symbols you
must state what those symbols mean.



2.3 Units of acceleration

The unit of acceleration is m s~2 (metres per second squared). The sprinter might have an acceleration of
5 m s~2; her velocity increases by 5 m s~ every second. You could express acceleration in other units.
For example, an advertisement might claim that a car accelerates from 0 to 60 miles per hour (mph) in 10

s. Its acceleration would then be 6 mph s~1 (6 miles per hour per second). However, mixing together
hours and seconds is not a good idea, and so acceleration is almost always given in the standard SI unit of

ms~2.

WORKED EXAMPLES

1 Leaving a bus stop, a bus reaches a velocity of 8.0 m s~1 after 10 s. Calculate the acceleration of
the bus.
Step 1 Note that the bus’s initial velocity is 0 m s™1.

Therefore:
change in velocity Av = (8.0 —0)ms™!
time taken At = 10s

Step 2 Substitute these values in the equation for acceleration:

Av
At
8.0
10

= 0.80m s 2

2 A sprinter starting from rest has an acceleration of 5.0 m s~2 during the first 2.0 s of a race.
Calculate her velocity after 2.0 s.

acceleration =

v—u
t

Step 1 Rearranging the equation a = gives:
v=u+at

Step 2 Substituting the values and calculating gives:
v=0+(5.0x2.0)=10ms"!

3 A train slows down from 60 m s~1 to 20 m s~! in 50 s. Calculate the magnitude of the deceleration
of the train.

Step 1 Write what you know:
u=60ms~! v=20ms! t=50s

Step 2 Take care! Here the train’s final velocity is less than its initial velocity. To ensure that we
arrive at the correct answer, we will use the alternative form of the equation to calculate a.

. v—Uu

a = =
_ 2060 _ —40
50 50
= —0.80ms 2

The minus sign (negative acceleration) indicates that the train is slowing down. It is
decelerating. The magnitude of the deceleration is 0.80 m s™2.

Questions
1 A car accelerates from a standing start and reaches a velocity of 18 m s~! after 6.0 s. Calculate its
acceleration.

2 A car driver brakes gently. Her car slows down from 23 m s~ to 11 m s~1 in 20 s. Calculate the
magnitude (size) of her deceleration. (Note that, because she is slowing down, her acceleration is
negative.)

3 A stone is dropped from the top of a cliff. Its acceleration is 9.81 m s~2. How fast is it moving:
a after 1.0 s?
b after 3.0s?






2.4 Deducing acceleration

The gradient of a velocity-time graph tells us whether the object’s velocity has been changing at a high
rate or a low rate, or not at all (Figure 2.4). We can deduce the value of the acceleration from the
gradient of the graph:

acceleration = gradient of velocity-time graph

acceleration = gradient of velocity-time graph

The graph (Figure 2.5) shows how the velocity of a cyclist changed during the start of a sprint race. We
can find his acceleration during the first section of the graph (where the line is straight) using the
triangle as shown.

The change in velocity Av is given by the vertical side of the triangle. The time taken At is given by the
horizontal side.

change in velocity
time taken
20
5

= 40ms2

acceleration =

A more complex example where the velocity-time graph is curved is shown in Figure 2.18.

A straight line with a v
positive slope shows
constant acceleration.

The greater the slope, the v
greater the acceleration.

The velocity is constant. v
Therefore acceleration a =0.

A negative slope shows v
deceleration (a is negative).

The slope is changing; v

e
t
the acceleration is changing. /

=]

Figure 2.4: The gradient of a velocity-time graph is equal to acceleration.
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Figure 2.5: Deducing acceleration from a velocity-time graph.




2.5 Deducing displacement

We can also find the displacement of a moving object from its velocity-time graph. This is given by the
area under the graph:

displacement = area under velocity-time graph

displacement = area under velocity-time graph

It is easy to see why this is the case for an object moving at a constant velocity. The displacement is
simply velocity x time, which is the area of the shaded rectangle (Figure 2.6a).

For changing velocity, again the area under the graph gives displacement (Figure 2.6b).
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Figure 2.6: The area under the velocity-time graph is equal to the displacement of the object.

So, for this simple case in which the area is a triangle, we have:

displacement = < x base x height
x 5.0 x 10
= 26m

NI

It is easy to confuse displacement-time graphs and velocity-time graphs. Check by looking at the quantity
marked on the vertical axis.

For more complex graphs, you may have to use other techniques such as counting squares to deduce the
area, but this is still equal to the displacement.

(Take care when counting squares: it is easiest when the sides of the squares stand for one unit. Check
the axes, as the sides may represent 2 units, 5 units or some other number.)

Questions

4 Alorry driver is travelling at the speed limit on a motorway. Ahead, he sees hazard lights and
gradually slows down. He sees that an accident has occurred, and brakes suddenly to a halt. Sketch a
velocity-time graph to represent the motion of this lorry.

5 Table 2.1 shows how the velocity of a motorcyclist changed during a speed trial along a straight road.



a Draw a velocity-time graph for this motion.

b From the table, deduce the motorcyclist’s acceleration during the first 10 s.

¢ Check your answer by finding the gradient of the graph during the first 10 s.

d Determine the motorcyclist’s acceleration during the last 15 s.

e Use the graph to find the total distance travelled during the speed trial.

Velocity / m s~ 15 30 30 20 10 0
Time / s 0 5 10 15 20 25 30

Table 2.1: Data for a motorcyclist.




2.6 Measuring velocity and acceleration

In a car crash, the occupants of the car may undergo a very rapid deceleration. This can cause them
serious injury, but can be avoided if an air-bag is inflated within a fraction of a second. Figure 2.7 shows
the tiny accelerometer at the heart of the system, which detects large accelerations and decelerations.

The acceleration sensor consists of two rows of interlocking teeth. In the event of a crash, these move
relative to one another, and this generates a voltage that triggers the release of the air-bag.

Figure 2.7: A micro-mechanical acceleration sensor is used to detect sudden accelerations and
decelerations as a vehicle travels along the road. This electron microscope image shows the device

magnified about 1000 times.

At the top of the photograph (Figure 2.7), you can see a second sensor that detects sideways
accelerations. This is important in the case of a side impact.

These sensors can also be used to detect when a car swerves or skids, perhaps on an icy road. In this
case, they activate the car’s stability-control systems.



2.7 Determining velocity and acceleration in
the laboratory

In Chapter 1, we looked at ways of finding the velocity of a trolley moving in a straight line. These
involved measuring distance and time, and deducing velocity. Practical Activity 2.1 shows how these
techniques can be extended to find the acceleration of a trolley.

PRACTICAL ACTIVITY 2.1: LABORATORY MEASUREMENTS OF ACCELERATION

Measurements using light gates

The computer records the time for the first ‘interrupt’ section of the card to pass through the light
beam of the light gate (Figure 2.8). Given the length of the interrupt, it can work out the trolley’s initial
velocity u. This is repeated for the second interrupt to give final velocity v. The computer also records
the time interval t3 — t1 between these two velocity measurements. Now it can calculate the

acceleration a as shown:

U= 5

(I1 = length of first section of the interrupt card)

and

V=9

(I = length of second section of the interrupt card)
Therefore:

change in velocity
time taken
v—u
—

(Note that this calculation gives only an approximate value for a. This is because u and v are average
speeds over a period of time; for an accurate answer we would need to know the speeds at times t; and

t3.)

Sometimes two light gates are used with a card of length I. The computer can still record the times as
shown and calculate the acceleration in the same way, with I; =1, = I.

light gate / ,\'(

interrupt
card

Figure 2.8: Determining acceleration using a single light gate.

Measurements using a ticker-timer

The practical arrangement is the same as for measuring velocity. Now we have to think about how to
interpret the tape produced by an accelerating trolley (Figure 2.9).
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If you count, there are only four intervals in each
section of tape, and each *interval® represents
.| *0.02s*, But we need to have *0.10* (5 intervals)

Please add one more point in each section,
to cut somewhere like this (but vertically):
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Figure 2.9: Ticker-tape for an accelerating trolley.

some typical results.

The acceleration is calculated to be:

By placing the sections of tape side by side, you can picture the velocity-time graph.

The tape is divided into sections, as before, every five dots. Remember that the time interval between
adjacent dots is 0.02 s. Each section represents 0.10 s.

The length of each section gives the trolley’s displacement in 0.10 s, from which the average velocity
during this time can be found. This can be repeated for each section of the tape, and a velocity-time
graph drawn. The gradient of this graph is equal to the acceleration. Table 2.2 and Figure 2.10 show

Figure 2.10: Deducing acceleration from measurements of a ticker-tape.

. Av
@ = X
— 093
020
~ 4.7ms 2
Section of tape | Time at start /s | Time interval / s | Length of section| velocity / m s~1
/ cm
0.0 0.10 2.3 0.23
2 0.10 0.10 7.0 0.70
3 0.20 0.10 11.6 1.16
Table 2.2: Data for Figure 2.10.
-1
vims 15 -
1 Av=0.93ms!
0.5
At=0.20s
0 : :
0 0.1 02 t/s

Measurements using a motion sensor

The computer software that handles the data provided by the motion sensor can calculate the
acceleration of a trolley. However, because it deduces velocity from measurements of position, and then
calculates acceleration from values of velocity, its precision is relatively poor.

Questions




6 Sketch a section of ticker-tape for a trolley that travels at a steady velocity and then decelerates.

7 Figure 2.11 shows the dimensions of an interrupt card, together with the times recorded as it passed
through a light gate. Use these measurements to calculate the acceleration of the card. (Follow the

steps outlined in Practical Activity 2.1.)

0s 0.20s 0.30s 0.35s

50cm 5.0cm

Figure 2.11: For Question 7.

8 Two adjacent five-dot sections of a ticker-tape measure 10 cm and 16 cm, respectively. The interval
between dots is 0.02 s. Deduce the acceleration of the trolley that produced the tape.



2.8 The equations of motion

As a space rocket rises from the ground, its velocity steadily increases. It is accelerating (Figure 2.12).

Eventually, it will reach a speed of several kilometres per second. Any astronauts aboard find themselves
pushed back into their seats while the rocket is accelerating.

Figure 2.12: A rocket accelerates as it lifts off from the ground.

The engineers who planned the mission must be able to calculate how fast the rocket will be travelling
and where it will be at any point in its journey. They have sophisticated computers to do this, using more
elaborate versions of the four equations of motion.

There is a set of equations that allows us to calculate the quantities involved when an object is moving
with a constant acceleration.

The quantities we are concerned with are:
displacement

initial velocity

final velocity

acceleration

T+ QA < 2 O

time taken

The four equations of motion are shown above.

Take care using the equations of motion. They can only be used for:
* motion in a straight line

* an object with constant acceleration.

KEY EQUATIONS

The four equations of motion:
equation 1: v = u + at

equation 2: s = (u;v) Xt

equation 3: s = ut + %at2

equation 4: v*> = u? + 2as

To get a feel for how to use these equations, we will consider some worked examples. In each example,
we will follow the same procedure:



Step 1 We write down the quantities that we know, and the quantity we want to find.

Step 2 Then we choose the equation that links these quantities, and substitute in the values.

Step 3 Finally, we calculate the unknown quantity.

We will look at where these equations come from in the next topic, ‘Deriving the equations of motion’.

WORKED EXAMPLES

4  The rocket shown in Figure 2.12 lifts off from rest with an acceleration of 20 m s~2. Calculate its
velocity after 50 s.

Step 1 What we know:

u=0ms!
a=20ms 2
t=50s

and what we want to know: v = ?
Step 2 The equation linking u, a, t and v is equation 1:
v=u+at
Substituting gives:
v=0+ (20 x 50)
Step 3 Calculation then gives:
v =1000ms™!
So the rocket will be travelling at 1000 m s~ after 50 s. This makes sense, since its velocity
increases by 20 m s~! every second, for 50 s.

You could use the same equation to work out how long the rocket would take to reach a
velocity of 2000 m s~1, or the acceleration it must have to reach a speed of 1000 m s~! in
40 s and so on.

5 The car shown in Figure 2.13 is travelling along a straight road at 8.0 m s~1. It accelerates at 1.0 m
s~2 for a distance of 18 m. How fast is it then travelling?

Figure 2.13: For Worked example 5. This car accelerates for a short distance as it travels along
the road.

In this case, we will have to use a different equation, because we know the distance during which
the car accelerates, not the time.

Step 1 What we know:

u=280ms!

a=10ms2
s=18m
and what we want to know: v = ?
Step 2 The equation we need is equation 4:
v2 = u? + 2as
Substituting gives:

v2=28.02+ (2% 1.0 x 18)




Step 3 Calculation then gives:

v2 =64 + 36 = 100 m?2 s~2

v=10ms~!

So the car will be travelling at 10 m s~1 when it stops accelerating.

(You may find it easier to carry out these calculations without including the units of
quantities when you substitute in the equation. However, including the units can help to
ensure that you end up with the correct units for the final answer.)

A train (Figure 2.14) travelling at 20 m s~ ! accelerates at 0.50 m s~2 for 30 s. Calculate the

distance travelled by the train in this time.

Figure 2.14: For Worked example 6. This train accelerates for 30 s.

Step 1 What we know:

u=20ms!

t=30s

a=0.50ms 2

and what we want to know: s = ?
Step 2 The equation we need is equation 3:

s = ut + 1at’

Substituting gives:

s = (20 x 30) + 1 x 0.5 x (30)°
Step 3 Calculation then gives:

s =600 + 225 =825 m

So the train will travel 825 m while it is accelerating.

The cyclist in Figure 2.15 is travelling at 15 m s~!. She brakes so that she doesn’t collide with the
wall. Calculate the magnitude of her deceleration.

Figure 2.15: For Worked example 7. The cyclist brakes to stop herself colliding with the wall.

This example shows that it is sometimes necessary to rearrange an equation, to make the unknown
quantity its subject. It is easiest to do this before substituting in the values.



Step 1 What we know:

u=15ms!
v=0ms!
s=18 m

and what we want to know: a = ?
Step 2 The equation we need is equation 4:
vZ = u? + 2as

Rearranging gives:
2 2

— V" —U
a = 2s

_ 0%—15°

a = 2%18
= =225
36

Step 3 Calculation then gives:
a=-625ms %2 =—-6.3ms2

So the cyclist will have to brake hard to achieve a deceleration of magnitude 6.3 m s™2. The
minus sign shows that her acceleration is negative; in other words, a deceleration.

Questions
2

9 A car is initially stationary. It has a constant acceleration of 2.0 m s~2.
a Calculate the velocity of the car after 10 s.
b Calculate the distance travelled by the car at the end of 10 s.
€ Calculate the time taken by the car to reach a velocity of 24 m s~1.
10 A train accelerates steadily from 4.0 m s~ to 20 m s~1 in 100 s.
a Calculate the acceleration of the train.
b From its initial and final velocities, calculate the average velocity of the train.
¢ Calculate the distance travelled by the train in this time of 100 s.

11 A caris moving at 8.0 m s~!. The driver makes it accelerate at 1.0 m s~2 for a distance of 18 m. What
is the final velocity of the car?



2.9 Deriving the equations of motion

We have seen how to make use of the equations of motion. But where do these equations come from?
They arise from the definitions of velocity and acceleration.

We can find the first two equations from the velocity-time graph shown in Figure 2.16. The graph
represents the motion of an object. Its initial velocity is u. After time ¢, its final velocity is v.

v-u=at

Velocity
)
o
=

I P e e e e et

0 Time
Figure 2.16: This graph shows the variation of velocity of an object with time. The object has constant
acceleration.

Equation 1

The graph of Figure 2.16 is a straight line, therefore the object’s acceleration a is constant. The gradient
(slope) of the line is equal to acceleration.

The acceleration is defined as:

_ ()
t

which is the gradient of the line. Rearranging this gives the first equation of motion:

v=u+at (equation 1)

Equation 2

Displacement is given by the area under the velocity-time graph. Figure 2.17 shows that the object’s
average velocity is half-way between u and v. So the object’s average velocity, calculated by averaging its
initial and final velocities, is given by:

(utv)
2

The object’s displacement is the shaded area in Figure 2.17. This is a rectangle, and so we have:

displacement = average velocity x time taken

and hence:

s = (utv) Xt (equation 2)

2
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Figure 2.17: The average velocity is half-way between u and v.

Equation 3

From equations 1 and 2, we can derive equation 3:

v=u+at (equation 1)
s = (u;v) Xt (equation 2)
Substituting v from equation 1 gives:
S = w X t
_ 2ut at?
= 3t
So
s =ut+ %at2 (equation 3)

Looking at Figure 2.16, you can see that the two terms on the right of the equation correspond to the
areas of the rectangle and the triangle that make up the area under the graph. Of course, this is the same

area as the rectangle in Figure 2.17.

Equation 4
Equation 4 is also derived from equations 1 and 2:

v=u+at (equation 1)

s = (u;v) X t (equation 2)

Substituting for time t from equation 1 gives:

(u+v) (v—u)

Rearranging this gives:
2as = (u+v)(v—u)
= 2—q?

or simply:
v2 = u? + 2as (equation 4)

Investigating road traffic accidents
The police frequently have to investigate road traffic accidents. They make use of many aspects of



physics, including the equations of motion. The next two questions will help you to apply what you have
learned to situations where police investigators have used evidence from skid marks on the road.

Questions

12 Trials on the surface of a new road show that, when a car skids to a halt, its acceleration is =7.0 m s
—2_ Estimate the skid-to-stop distance of a car travelling at a speed limit of 30 m s~! (approximately
110 km h~! or 70 mph).

13 At the scene of an accident on a country road, police find skid marks stretching for 50 m. Tests on the
road surface show that a skidding car decelerates at 6.5 m s~2. Was the car that skidded exceeding
the speed limit of 25 m s~! (90 km h~!) on this road?



2.10 Uniform and nonuniform acceleration

It is important to note that the equations of motion only apply to an object that is moving with a constant
acceleration. If the acceleration a was changing, you wouldn’t know what value to put in the equations.
Constant acceleration is often referred to as uniform acceleration.

The velocity-time graph in Figure 2.18 shows non-uniform acceleration. It is not a straight line; its
gradient is changing (in this case, decreasing).
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Figure 2.18: This curved velocity-time graph cannot be analysed using the equations of motion.

The acceleration at any instant in time is given by the gradient of the velocity-time graph. The triangle in
Figure 2.18 shows how to find the acceleration at t = 20 seconds:

e At the time of interest, mark a point on the graph.

e Draw a tangent to the curve at that point.

* Make a large right-angled triangle, and use it to find the gradient.

You can find the change in displacement of the body as it accelerates by determining the area under the
velocity-time graph.

To find the displacement of the object in Figure 2.18 between t = 0 and t = 20 s, the most
straightforward, but lengthy, method is just to count the number of small squares.

In this case, up to t = 20 s, there are about 250 small squares. This is tedious to count but you can save
yourself a lot of time by drawing a line from the origin to the point at 20 s. The area of the triangle is easy
to find (200 small squares) and then you only have to count the number of small squares between the line
you have drawn and the curve on the graph (about 50 squares)

In this case, each square is 1 m s~1 on the y-axis by 1 s on the x-axis, so the area of each square is 1 x 1
= 1 m and the displacement is 250 m. In other cases, note carefully the value of each side of the square
you have chosen.

Questions

14 The graph in Figure 2.19 represents the motion of an object moving with varying acceleration. Lay
your ruler on the diagram so that it is tangential to the graph at point P.

a What are the values of time and velocity at this point?
b Estimate the object’s acceleration at this point.
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Figure 2.19: For Question 14.

15 The velocity-time graph (Figure 2.20) represents the motion of a car along a straight road for a
period of 30 s.

a Describe the motion of the car.

From the graph, determine the car’s initial and final velocities over the time of 30 s.
Determine the acceleration of the car.

By calculating the area under the graph, determine the displacement of the car.

o Q0 g

Check your answer to part d by calculating the car’s displacement using s = ut%at2 .
v/ms?
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Figure 2.20: For Question 15.




2.11 Acceleration caused by gravity

If you drop a ball or stone, it falls to the ground. Figure 2.21, based on a multiflash photograph, shows the
ball at equal intervals of time. You can see that the ball’s velocity increases as it falls because the spaces
between the images of the ball increase steadily. The ball is accelerating.

A multiflash photograph is useful to demonstrate that the ball accelerates as it falls. Usually, objects fall
too quickly for our eyes to be able to observe them speeding up. It is easy to imagine that the ball moves
quickly as soon as you let it go, and falls at a steady speed to the ground. Figure 2.21 shows that this is
not the case.

If we measure the acceleration of a freely falling object on the surface of the Earth, we find a value of
about 9.81 m s™2. This is known as the acceleration of free fall, and is given the symbol g:

O L EO B CIOTH
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Figure 2.21: This diagram of a falling ball, based on a multiflash photo, clearly shows that the ball’s
velocity increases as it falls.

acceleration of free fall g = 9.81 m s~2

The value of g depends on where you are on the Earth’s surface, but we usually take g = 9.81 m s™2.

If we drop an object, its initial velocity u = 0. How far will it fall in time t? Substituting in s = ut%at2
gives displacement s:

s = %><9.81><t2
= 4.9 x ¢

Hence, by timing a falling object, we can determine g.

Questions
16 If you drop a stone from the edge of a cliff, its initial velocity u = 0, and it falls with acceleration g =
9.81 m s~2. You can calculate the distance s it falls in a given time ¢ using an equation of motion.
a Copy and complete Table 2.3, which shows how s depends on t.
b Draw a graph of s against t.
¢ Use your graph to find the distance fallen by the stone in 2.5 s.
d

Use your graph to find how long it will take the stone to fall to the bottom of a cliff 40 m high.
Check your answer using the equations of motion.




Time / s

1.0

2.0

3.0

4.0

Displacement / m

4.9

Table 2.3: Time t and displacement s data fo

17 An egg falls off a table. The floor is 0.8 m from the table-top.

a Calculate the time taken to reach the ground.
b Calculate the velocity of impact with the ground.



2.12 Determining g

One way to measure the acceleration of free fall g would be to try bungee-jumping (Figure 2.22). You
would need to carry a stopwatch, and measure the time between jumping from the platform and the
moment when the elastic rope begins to slow your fall. If you knew the length of the unstretched rope, you
could calculate g.

There are easier methods for finding g that can be used in the laboratory. These are described in Practical
Activity 2.2.

Figure 2.22: A bungee-jumper falls with initial acceleration g.

PRACTICAL ACTIVITY 2.2: LABORATORY MEASUREMENTS OF g

Measuring g using an electronic timer

In this method, a steel ball-bearing is held by an electromagnet (Figure 2.23). When the current to the
magnet is switched off, the ball begins to fall and an electronic timer starts. The ball falls through a
trapdoor, and this breaks a circuit to stop the timer. This tells us the time taken for the ball to fall from
rest through the distance h between the bottom of the ball and the trapdoor.

Here is how we can use one of the equations of motion to find g:
displacement s = h

time taken =t

initial velocity u = 0

accelerationa = g

Substituting in s = ut + %at2 gives:

h = 1gt?

and for any values of h and t we can calculate a value for g.




electromagnet

ball-bearing

trapdoor

Figure 2.23: The timer records the time for the ball to fall through the distance h.

A more satisfactory procedure is to take measurements of t for several different values of h. The height
of the ball bearing above the trapdoor is varied systematically, and the time of fall measured several
times to calculate an average for each height. Table 2.4 and Figure 2.24 show some typical results. We

can deduce g from the gradient of the graph of h against t2.
The equation for a straight line through the origin is:

y=mx

In our experiment we have:

o
1]

h/m t/s t2 / s2
0.27 0.25 0.063
0.39 0.30 0.090
0.56 0.36 0.130
0.70 0.41 0.168
0.90 0.46 0.212

Table 2.4: Data for Figure 2.24. These are mean values.

The gradient of the straight line of a graph of h against t? is equal to g.
h/m

1.0 A

0.8

0.6 A

0.4+ I Ah=0.84m
0.2 1

0 T T T 1
0 0.05 0.10 0.15 0.20 0.25 £2/s?

Figure 2.24: The acceleration of free fall can be determined from the gradient.




Therefore:

gradient =
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g=42x2=84ms2

Sources of uncertainty

The electromagnet may retain some magnetism when it is switched off, and this may tend to slow the
ball’s fall. Consequently, the time t recorded by the timer may be longer than if the ball were to fall
completely freely. From h = gt2, it follows that, if t is too great, the experimental value of g will be too
small. This is an example of a systematic error - all the results are systematically distorted so that they
are too great (or too small) as a consequence of the experimental design.

Measuring the height h is awkward. You can probably only find the value of h to within =1 mm at best.
So there is a random error in the value of h, and this will result in a slight scatter of the points on the
graph, and a degree of uncertainty in the final value of g.

If you just have one value for h and the corresponding value for t you can use the uncertainty in h and ¢
to find the uncertainty in g.

The percentage uncertainty in g = percentage uncertainty in h + 2 X percentage uncertainty in t.
For more about errors and combining uncertainties, see Chapter P1.

Measuring g using a ticker-timer

Figure 2.25 shows a weight falling. As it falls, it pulls a tape through a ticker-timer. The spacing of the
dots on the tape increases steadily, showing that the weight is accelerating. You can analyse the tape to
find the acceleration, as discussed in Practical Activity 2.1.

ticker-timer

ticker-tape

B/ weight

Figure 2.25: A falling weight pulls a tape through a ticker-timer.

This is not a very satisfactory method of measuring g. The main problem arises from friction between the
tape and the ticker-timer. This slows the fall of the weight and so its acceleration is less than g. (This is
another example of a systematic error.)

The effect of friction is less of a problem for a large weight, which falls more freely. If measurements are
made for increasing weights, the value of acceleration gets closer and closer to the true value of g.

Measuring g using a light gate

Figure 2.26 shows how a weight can be attached to a card ‘interrupt’. The card is designed to break the
light beam twice as the weight falls. The computer can then calculate the velocity of the weight twice as
it falls, and hence find its acceleration:

T
ta—ty

initial velocity v =
final velocity v = %~

Therefore:

acceleration a =

t3—t1




The weight can be dropped from different heights above the light gate. This allows you to find out
whether its acceleration is the same at different points in its fall. This is an advantage over Method 1,
which can only measure the acceleration from a stationary start.

catpiter falling plate

-,
X

-1—.!3

-q-tz
o

—-1—[”1

Figure 2.26: The weight accelerates as it falls. The upper section of the card falls more quickly
through the light gate.

WORKED EXAMPLE

8 To get a rough value for g, a student dropped a stone from the top of a cliff. A second student timed
the stone’s fall using a stopwatch. Here are their results:

estimated height of cliff = 30 m

time of fall = 2.6 s

Use the results to estimate a value for g.

Step 1 Calculate the average speed of the stone:

average speed of stone during fall = 2‘9’—% =11.5ms™!

Step 2 Find the values of v and u:
final speed v=2 x 11.5m s~} =23.0ms™!
initial speed u = 0 m s~}

Step 3 Substitute these values into the equation for acceleration:

a =

= 88ms 2

Note that you can reach the same result more directly using § = ut + %at2, but you may find
it easier to follow what is going on using the method given here. We should briefly consider
why the answer is less than the expected value of g = 9.81 m s™2. It might be that the cliff
was higher than the student’s estimate. The timer may not have been accurate in switching
the stopwatch on and off. There will have been air resistance that slowed the stone’s fall.

Questions
18 A steel ball falls from rest through a height of 2.10 m. An electronic timer records a time of 0.67 s for
the fall.

a Calculate the average acceleration of the ball as it falls.

b Suggest reasons why the answer is not exactly 9.81 m s™2.

¢ Suppose the height is measured accurately but the time is measured to an uncertainty of £0.02 s.
Calculate the percentage uncertainty in the time and the percentage uncertainty in the average
acceleration. You can do this by repeating the calculation for g using a time of 0.65 s. You can find
out more about uncertainty in Chapter P1.

19 In an experiment to determine the acceleration due to gravity, a ball was timed electronically as it fell
from rest through a height h. The times t shown in Table 2.5 were obtained.
a  Plot a graph of h against t2.
b From the graph, determine the acceleration of free fall g.
¢ Comment on your answer.



Height h / m 0.70 1.03 1.25 1.60 1.99

Time t /s 0.99 1.13 1.28 1.42 1.60

Table 2.5: Height h and time t data for Question 19.

20 In Chapter 1, we looked at how to use a motion sensor to measure the speed and position of a moving
object. Suggest how a motion sensor could be used to determine g.



2.13 Motion in two dimensions: projectiles

A curved trajectory

A multiflash photograph can reveal details of the path, or trajectory, of a projectile. Figure 2.27 shows the
trajectories of a projectile - a bouncing ball. Once the ball has left the child’s hand and is moving through
the air, the only force acting on it is its weight.

The ball has been thrown at an angle to the horizontal. It speeds up as it falls - you can see that the
images of the ball become further and further apart. At the same time, it moves steadily to the right. You
can see this from the even spacing of the images across the picture.

The ball’s path has a mathematical shape known as a parabola. After it bounces, the ball is moving more
slowly. It slows down, or decelerates, as it rises - the images get closer and closer together.

We interpret this picture as follows. The vertical motion of the ball is affected by the force of gravity, that
is, its weight. When it rises it has a vertical deceleration of magnitude g, which slows it down, and when it
falls it has an acceleration of g, which speeds it up. The ball’s horizontal motion is unaffected by gravity.
In the absence of air resistance, the ball has a constant velocity in the horizontal direction. We can treat
the ball’s vertical and horizontal motions separately, because they are independent of one another.

Figure 2.27: A bouncing ball is an example of a projectile. This multiflash photograph shows details of
its motion that would escape the eye of an observer.

Components of a vector

In order to understand how to treat the velocity in the vertical and horizontal directions separately we
start by considering a constant velocity.

If an aeroplane has a constant velocity v at an angle # as shown in Figure 2.28, then we say that this
velocity has two effects or components, vy in a northerly direction and vg in an easterly direction. These

two components of velocity add up to make the actual velocity v.

This process of taking a velocity and determining its effect along another direction is known as resolving
the velocity along a different direction. In effect, splitting the velocity into two components at right angles
is the reverse of adding together two vectors - it is splitting one vector into two vectors along convenient

directions.

For a velocity v at an angle 6 to the x-direction the components are:
x-direction: v cos 6

y-direction: v sin 6



vy =vecost A v

B
|

ve=vsing

Figure 2.28: Components of a velocity. The component due north is vy = v cosd and the component due
east is vg = v siné.

To find the component of any vector (for example, displacement, velocity, acceleration) in a particular
direction, we can use the following strategy:

Step 1 Find the angle 6 between the vector and the direction of interest.
Step 2 Multiply the vector by the cosine of the angle 6.
So the component of an object’s velocity v at angle 6 to v is equal to v cos ¢ (Figure 2.28).

Question

21 Find the x- and y-components of each of the vectors shown in Figure 2.29. (You will need to use a
protractor to measure angles from the diagram.)

y

5.0ms

. d 80 N

6.0ms?

Figure 2.29: The vectors for Question 21.




2.14 Understanding projectiles

We will first consider the simple case of a projectile thrown straight up in the air, so that it moves
vertically. Then we will look at projectiles that move horizontally and vertically at the same time.

Up and down

A stone is thrown upwards with an initial velocity of 20 m s~1. Figure 2.30 shows the situation.

It is important to use a consistent sign convention here. We will take upwards as positive, and downwards
as negative. So the stone’s initial velocity is positive, but its acceleration g is negative. We can solve
various problems about the stone’s motion by using the equations of motion.

How high?
How high will the stone rise above ground level of the cliff?
As the stone rises upwards, it moves more and more slowly - it decelerates because of the force of gravity.

positive
| direction

Figure 2.30: Standing at the edge of the cliff, you throw a stone vertically upwards. The height of the
cliff is 25 m.

At its highest point, the stone’s velocity is zero. So the quantities we know are:

initial velocity = u = 20ms!
final velocity = v = 0oms!
acceleration = a = -98lms2
displacement = s = 7

The relevant equation of motion is v2 = u? + 2as. Substituting values gives:

02 = 20 +2x(—9.81) x s

0 = 400—-19.62s

400
19.62

= 204m~20m

S

The stone rises 20 m upwards before it starts to fall again.

How long?
How long will it take from leaving your hand for the stone to fall back to the clifftop?
When the stone returns to the point from which it was thrown, its displacement s is zero. So:



S =

u=20ms !
a=-98lms?
t =7

Substituting in § = ut + %at2 gives:

0 = 20tx £(—9.81) x 2
= 20t — 4.905¢*
(20 — 4.905t) x t

There are two possible solutions to this:
* t=0s;in other words, the stone had zero displacement at the instant it was thrown

e t=4.1s;in other words, the stone returned to zero displacement after 4.1 s, which is the answer we
are interested in.

Falling further
The height of the cliff is 25 m. How long will it take the stone to reach the foot of the cliff?

This is similar to the last example, but now the stone’s final displacement is 25 m below its starting point.
By our sign convention, this is a negative displacement and s = —25 m.

Questions

22 In the example in ‘Falling further’, calculate the time it will take for the stone to reach the foot of the
cliff.

23 A ball is fired upwards with an initial velocity of 30 m s~1. Table 2.6 shows how the ball’s velocity
changes. (Take g = 9.81 m s™2))
a Copy and complete the table.
b Draw a graph to represent the data.
¢ Use your graph to deduce how long the ball took to reach its highest point.

Velocity / m s™1 30 20.19

Time /s 0 1.0 2.0 3.0 4.0 5.0

Table 2.6: For Question 23.

Vertical and horizontal at the same time

Here is an example to illustrate what happens when an object travels vertically and horizontally at the
same time.

In a toy, a ball-bearing is fired horizontally from a point 0.4 m above the ground. Its initial velocity is 2.5 m
s™1. Its positions at equal intervals of time have been calculated and are shown in Table 2.7. These results
are also shown in Figure 2.31. Study the table and the graph. You should notice the following:

* The horizontal distance increases steadily. This is because the ball’s horizontal motion is unaffected by

the force of gravity. It travels at a steady velocity horizontally so we can use v = %

e The vertical distances do not show the same pattern. The ball is accelerating downwards so we must
use the equations of motion. (These figures have been calculated using g = 9.81 m s™2.)

Time / s Horizontal distance / m Vertical distance / m
0.00 0.00 0.000
0.04 0.10 0.008
0.08 0.20 0.031
0.12 0.30 0.071
0.16 0.40 0.126
0.20 0.50 0.196
0.24 0.60 0.283




0.28 0.70 0.385

Table 2.7: Data for the example of a moving ball, as shown in Figure 2.31.

Horizontal distance / m
01 02 03 04 05 06 0.7

0.1 -

_ constant horizontal velocity
0.2 - !

0.3 4 :in{:reasing vertical velocity

0.4 *___'__z_____:_____f_ ________ S gl

Vertical distance fallen / m

Figure 2.31: This sketch shows the path of the ball projected horizontally. The arrows represent the
horizontal and vertical components of its velocity.

You can calculate the distance s fallen using the equation of motion s = ut + %atz. (The initial vertical
velocity u = 0.)

The horizontal distance is calculated using:

horizontal distance = 2.5 x ¢t

The vertical distance is calculated using:

vertical distance = % x 9.81 x 2

In the absence of air resistance, an object has constant velocity
horizontally and constant acceleration vertically.

WORKED EXAMPLES

9 A stone is thrown horizontally with a velocity of 12 m s~! from the top of a vertical cliff.

Calculate how long the stone takes to reach the ground 40 m below and how far the stone lands from
the base of the cliff.

Step 1 Consider the ball’s vertical motion. It has zero initial speed vertically and travels 40 m with
acceleration 9.81 m s~2 in the same direction.

s=ut+%at2
40 = 0+ 1 x 9.81 x ¢
So, t = 2.86 s.

Step 2 Consider the ball’s horizontal motion. The ball travels with a constant horizontal velocity, 12
m s~1, as long as there is no air resistance.

distance travelled = u x t =12 x 2.86 = 34.3 m

Hint: You may find it easier to summarise the information like this:
verticallys =40u=0a=981t=?v="

horizontallyu =12v=12a=0t=?s="7?

10 A ball is thrown with an initial velocity of 20 m s~! at an angle of 30° to the horizontal (Figure 2.32).
Calculate the horizontal distance travelled by the ball (its range).




Figure 2.32: For Worked example 10.

Step 1 Split the ball’s initial velocity into horizontal and vertical components:

initial velocity = u = 20 m s™1
horizontal component of initial velocity v=u cos § = 20 x cos 30° = 17.3 m s~}
vertical component of initial velocity = u sin § = 20 x sin 30° = 10 m s~1

Step 2 Consider the ball’s vertical motion. How long will it take to return to the ground? In other
words, when will its displacement return to zero?
u=10ms™! a=-981ms™2 s=0 t="7?
Using s = ut + %atz, we have:

0 = 10t — 4.905t2
This givest =0sort =2.04s.
So, the ball is in the air for 2.04 s.

Step 3 Consider the ball’s horizontal motion. How far will it travel horizontally in the 2.04 s before it
lands? This is simple to calculate, since it moves with a constant horizontal velocity of 17.3 m
-1
sTH.
horizontal displacement s = 17.3 x 2.04
= 353m

Hence the horizontal distance travelled by the ball (its range) is about 35 m.

Questions

24

25

26

A stone is thrown horizontally from the top of a vertical cliff and lands 4.0 s later at a distance 12.0 m
from the base of the cliff. Ignore air resistance.

a Calculate the horizontal speed of the stone.
b Calculate the height of the cliff.

A stone is thrown with a velocity of 8.0 m s~1 into the air at an angle of 40° to the horizontal.
a Calculate the vertical component of the velocity.

b State the value of the vertical component of the velocity when the stone reaches its highest point.
Ignore air resistance.

¢ Use your answers to part a and part b to calculate the time the stone takes to reach its highest
point.

d Calculate the horizontal component of the velocity.

e Use your answers to part ¢ and part d to find the horizontal distance travelled by the stone as it
climbs to its highest point.

The range of a projectile is the horizontal distance it travels before it reaches the ground. The greatest
range is achieved if the projectile is thrown at 45° to the horizontal.

A ball is thrown with an initial velocity of 40 m s~1. Calculate its greatest possible range when air
resistance is considered to be negligible.

Could you easily teach somebody a proof of the equations of motion? How would you do this?

What do you find unexpected about projectile motion?




SUMMARY

Acceleration is equal to the rate of change of velocity. It is a vector, has units m s~2 and can be found
from the gradient of a velocity-time graph. The area under this graph is the change in displacement.

Acceleration, velocity, displacement and time for a uniform acceleration are related by the equations
of motion, which you should know how to derive and use.

The acceleration of free fall is taken as 9.81 m s~2 and you should know an experiment to measure
this quantity.

Vector quantities can be resolved into components. Components at right angles to one another can be
treated independently. For a velocity v at an angle 0 to the x-direction the components are:

x-direction: v cos 0
y-direction: v sin ¢

In the absence of air resistance, projectiles involve a constant acceleration downwards and a constant
velocity horizontally. These can be treated independently of one another.
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4 A motorway designer can assume that cars approaching a motorway enter a

slip road with a velocity of 10 m s~1 and reach a velocity of 30 m s~ before
joining the motorway. Calculate the minimum length for the slip road,

assuming that vehicles have an acceleration of 4.0 m s™=.

2

5 A train is travelling at 50 m s~! when the driver applies the brakes and gives

the train a constant deceleration of magnitude 0.50 m s~2 for 100 s. Describe
what happens to the train. Calculate the distance travelled by the train in 100

S.

6 A boy stands on a cliff edge and throws a stone vertically upwards at time t =

0.
9.

a

The stone leaves his hand at 20 m s~!. Take the acceleration of the ball as
81 ms2.

Show that the equation for the displacement of the ball is:
s = 20t — 4.9t2

Calculate the height of the stone 2.0 s after release and 6.0 s after release.
Calculate the time taken for the stone return to the level of the boy’s hand.

You may assume the boy’s hand does not move vertically after the ball is
released.

7 This graph shows the variation of velocity with time of two cars, A and B,
which are travelling in the same direction over a period of time of 40 s.
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Figure 2.35

Car A, travelling at a constant velocity of 40 m s~1, overtakes car B at time t =

0.

In order to catch up with car A, car B immediately accelerates uniformly for

20 s to reach a constant velocity of 50 m s~1. Calculate:

a

b
c
d

the distance that A travels during the first 20 s

the acceleration and distance of travel of B during the first 20 s
the additional time taken for B to catch up with A

the distance each car will have then travelled since t = 0.

8 An athlete competing in the long jump leaves the ground with a velocity of 5.6

[4]

[7]

21
[31

[41]
[Total: 9]

21
[51]
21
21
[Total: 11]



m s~! at an angle of 30° to the horizontal.

a Determine the vertical component of the velocity and use this value to find
the time between leaving the ground and landing.

b Determine the horizontal component of the velocity and use this value to
find the horizontal distance travelled.

9 This diagram shows an arrangement used to measure the acceleration of a
metal plate as it falls vertically.

D metal plate

[]ght beam 1 ---ceoemreen- L S Sk S R [:]x
0.250 m
lightheam 2 o s DI

Figure 2.36

timer

The metal plate is released from rest and falls a distance of 0.200 m before
breaking light beam 1. It then falls a further 0.250 m before breaking light
beam 2.

a Calculate the time taken for the plate to fall 0.200 m from rest. (You may
assume that the metal plate falls with an acceleration equal to the
acceleration of free fall.)

b The timer measures the speed of the metal plate as it falls through each

light beam. The speed as it falls through light beam 1 is 1.92 m s~1 and the

speed as it falls through light beam 2 is 2.91 m s~L.

i Calculate the acceleration of the plate between the two light beams.

ii State and explain one reason why the acceleration of the plate is not
equal to the acceleration of free fall.

10 This is a velocity-time graph for a vertically bouncing ball.

Time

Velocity
o
5
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3

Figure 2.37

The ball is released at A and strikes the ground at B. The ball leaves the
ground at D and reaches its maximum height at E. The effects of air resistance
can be neglected.

a State:
i why the velocity at D is negative
ii why the gradient of the line AB is the same as the gradient of line DE
iii what is represented by the area between the line AB and the time axis
iv why the area of triangle ABC is greater than the area of triangle CDE.
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[4]
[Total: 8]
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[2]
[Total: 6]
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b The ball is dropped from rest from an initial height of 1.2 m. After hitting
the ground the ball rebounds to a height of 0.80 m. The ball is in contact
with the ground between B and D for a time of 0.16 s.

Using the acceleration of free fall, calculate:
i the speed of the ball immediately before hitting the ground
ii the speed of the ball immediately after hitting the ground

iii the acceleration of the ball while it is in contact with the ground. State
the direction of this acceleration.

11 A student measures the speed v of a trolley as it moves down a slope. The
variation of v with time t is shown in this graph.
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Figure 2.38

a Use the graph to find the acceleration of the trolley when t = 0.70 s.

b State how the acceleration of the trolley varies betweent = 0 and t = 1.0 s.
Explain your answer by reference to the graph.

¢ Determine the distance travelled by the trolley between t = 0.60 and t =
0.80 s.

d The student obtained the readings for v using a motion sensor. The
readings may have random errors and systematic errors. Explain how
these two types of error affect the velocity-time graph.

12 A car driver is travelling at speed v on a straight road. He comes over the top
of a hill to find a fallen tree on the road ahead. He immediately brakes hard but
travels a distance of 60 m at speed v before the brakes are applied. The skid
marks left on the road by the wheels of the car are of length 140 m, as shown.

top ?f hill skid marks
i [
. 60 m 140m

Figure 2.39

The police investigate whether the driver was speeding and establish that the
car decelerates at 2.0 m s~2 during the skid.
a Determine the initial speed v of the car before the brakes are applied.

b Determine the time taken between the driver coming over the top of the
hill and applying the brakes. Suggest whether this shows whether the
driver was alert to the danger.

2]
[2]

[31

[Total: 11]
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[31

[3]

[2]

[Total: 10]
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21



The speed limit on the road is 100 km/h. Determine whether the driver was
: L [21
breaking the speed limit.

[Total: 6]

13 A hot-air balloon rises vertically. At time t = 0, a ball is released from the
balloon. This graph shows the variation of the ball’s velocity v with ¢t. The ball
hits the ground at t = 4.1 s.

20
v/ms!
0
t/s
-20
Figure 2.40
a Explain how the graph shows that the acceleration of the ball is constant. [11
b Use the graph to:
i determine the time at which the ball reaches its highest point [1]
ii show that the ball rises for a further 12 m between release and its
highest point [21
iii determine the distance between the highest point reached by the ball
and the ground. [21

¢ The equation relating vand tis v = 15 — 9.81¢. State the significance in
the equation of:

i the number 15 [1]
ii the negative sign. [11
[Total: 8]

14 An aeroplane is travelling horizontally at a speed of 80 m s~! and drops a crate
of emergency supplies.

80m s

Figure 2.41

To avoid damage, the maximum vertical speed of the crate on landing is 20 m s
~1. You may assume air resistance is negligible.

a Calculate the maximum height of the aeroplane when the crate is dropped. [2]
Calculate the time taken for the crate to reach the ground from this height. [2]

¢ The aeroplane is travelling at the maximum permitted height. Calculate the
horizontal distance travelled by the crate after it is released from the
aeroplane. [11






SELF-EVALUATION CHECKLIST

After studying the chapter, complete a table like this:

Needs more Ready to

I can See topic... Almost there

work move on
define acceleration 2.1
calculate displacement from the area 2.5

under a velocity-time graph

calculate velocity using the gradient of 2.6
a displacement-time graph

calculate acceleration using the 24
gradient of a velocity-time graph

derive and use the equations of 2.10
uniformly accelerated motion

describe an experiment to measure the 2.11,2.12
acceleration of free fall, g

use perpendicular components to 2.13
represent a vector

explain projectile motion using uniform 2.14
velocity in one direction and uniform
acceleration in a perpendicular
direction and do calculations on this
motion.




