

| Question | Answer                                                                       | Marks |
|----------|------------------------------------------------------------------------------|-------|
| 1(a)(i)  | region (of space)                                                            | B1    |
|          | where a particle experiences a force                                         | B1    |
| 1(a)(ii) | force per unit mass                                                          | B1    |
| 1(b)     | $g = GM / R^2$                                                               | C1    |
|          | $= (6.67 \times 10^{-11} \times 6.42 \times 10^{23}) / (3.39 \times 10^6)^2$ | C1    |
|          | $= 3.73 \text{ N kg}^{-1}$                                                   | A1    |

Cam E-Guide

| Question | Answer                                                                             | Marks |
|----------|------------------------------------------------------------------------------------|-------|
| 1(c)     | $0.99 \times 3.73 = (6.67 \times 10^{-11} \times 6.42 \times 10^{23}) / r^2$       | C1    |
|          | $r = 3.41 \times 10^6 \text{ (m)}$                                                 | C1    |
|          | height = $(r - R)$<br>$= 2 \times 10^4 \text{ m}$                                  | A1    |
|          | or                                                                                 |       |
|          | $0.99 \times 3.73 = (6.67 \times 10^{-11} \times 6.42 \times 10^{23}) / (R + h)^2$ | (C1)  |
|          | $(R + h)^2 = 1.1596 \times 10^{13}$                                                |       |
|          | $R + h = 3.41 \times 10^6 \text{ (m)}$                                             | (C1)  |
|          | $h = 2 \times 10^4 \text{ m}$                                                      | (A1)  |
|          | or                                                                                 |       |
|          | $0.99 = (3.39 \times 10^6)^2 / r^2$                                                | (C1)  |
|          | $r = 3.41 \times 10^6 \text{ (m)}$                                                 | (C1)  |
|          | height = $2 \times 10^4 \text{ m}$                                                 | (A1)  |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks          |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|----------------|-----------------------|--------|---------|------|--------|--------|---|--------|--------|--------|-------|---|-------|
| 2(a)     | +q: thermal energy transfer to system                                                                                                                                                                                                                                                                                                                                                                                        | B1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
|          | +w: work done on system                                                                                                                                                                                                                                                                                                                                                                                                      | B1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
| 2(b)(i)  | $(W =) 2.6 \times 10^5 \times (3.8 - 2.3) \times 10^{-3} = 390 \text{ J}$                                                                                                                                                                                                                                                                                                                                                    | A1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
| 2(b)(ii) | no (total) change (in internal energy)                                                                                                                                                                                                                                                                                                                                                                                       | B1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
|          | gas returns to its original temperature                                                                                                                                                                                                                                                                                                                                                                                      | B1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
| 2(c)     | A to B row all correct (1370, – 390, 980)                                                                                                                                                                                                                                                                                                                                                                                    | B1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
|          | B to C row all correct (0, 550, 550)                                                                                                                                                                                                                                                                                                                                                                                         | B1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
|          | C to A row: $\Delta U$ adds to the other two $\Delta U$ values to give zero                                                                                                                                                                                                                                                                                                                                                  | B1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
|          | C to A row: $w = 0$ <b>and</b> $q$ adds to $w$ to give $\Delta U$ value<br>complete correct answer:                                                                                                                                                                                                                                                                                                                          | B1             |                       |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
|          | <table border="1"> <thead> <tr> <th>change</th> <th><math>q / \text{J}</math></th> <th><math>w / \text{J}</math></th> <th><math>\Delta U / \text{J}</math></th> </tr> </thead> <tbody> <tr> <td>A to B</td> <td>(+)1370</td> <td>–390</td> <td>(+)980</td> </tr> <tr> <td>B to C</td> <td>0</td> <td>(+)550</td> <td>(+)550</td> </tr> <tr> <td>C to A</td> <td>–1530</td> <td>0</td> <td>–1530</td> </tr> </tbody> </table> | change         | $q / \text{J}$        | $w / \text{J}$ | $\Delta U / \text{J}$ | A to B | (+)1370 | –390 | (+)980 | B to C | 0 | (+)550 | (+)550 | C to A | –1530 | 0 | –1530 |
| change   | $q / \text{J}$                                                                                                                                                                                                                                                                                                                                                                                                               | $w / \text{J}$ | $\Delta U / \text{J}$ |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
| A to B   | (+)1370                                                                                                                                                                                                                                                                                                                                                                                                                      | –390           | (+)980                |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
| B to C   | 0                                                                                                                                                                                                                                                                                                                                                                                                                            | (+)550         | (+)550                |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |
| C to A   | –1530                                                                                                                                                                                                                                                                                                                                                                                                                        | 0              | –1530                 |                |                       |        |         |      |        |        |   |        |        |        |       |   |       |

| Question | Answer                                                                                                                                                                                 | Marks     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 3(a)     | acceleration (directly) proportional to displacement<br>acceleration in opposite <u>direction</u> to displacement<br><b>or</b><br>acceleration (directed) towards equilibrium position | <b>B1</b> |
| 3(b)     | $v = \omega(x_0^2 - x^2)^{1/2}$ <b>and</b> $\omega = 2\pi f$<br><b>or</b><br>$v_0 = x_0\omega$ <b>and</b> $\omega = 2\pi f$                                                            | <b>C1</b> |
|          | substitution of any correct point from graph, e.g. for $x = 0$ :<br>$0.25 = 2\pi f \times 8.8 \times 10^{-2}$                                                                          | <b>C1</b> |
|          | $f = 0.45 \text{ Hz}$                                                                                                                                                                  | <b>A1</b> |
| 3(c)     | $1 / 0.45 = 2\pi \times (L / 9.81)^{1/2}$                                                                                                                                              | <b>C1</b> |
|          | $L = 1.2 \text{ m}$                                                                                                                                                                    | <b>A1</b> |
| 3(d)     | ellipse about the origin with same intercepts on $x$ -axis                                                                                                                             | <b>B1</b> |
|          | ellipse about the origin crossing $v$ -axis inside original loop                                                                                                                       | <b>B1</b> |

| Question | Answer                                                                       | Marks     |
|----------|------------------------------------------------------------------------------|-----------|
| 4(a)     | quartz crystal                                                               | <b>B1</b> |
|          | alternating p.d. across crystal causes it to vibrate                         | <b>B1</b> |
|          | resonance occurs when frequency of p.d. matches natural frequency of crystal | <b>B1</b> |
|          | natural frequency of crystal is in ultrasound range                          | <b>B1</b> |
| 4(b)     | $I = I_0 e^{-\mu x}$                                                         | <b>C1</b> |
|          | $I/I_0 = e^{-1.2 \times 3.5}$<br>= 0.015                                     | <b>C1</b> |
|          | ratio / dB = $-10 \lg (1/0.015)$ or $10 \lg (0.015)$                         | <b>C1</b> |
|          | = -18 dB                                                                     | <b>A1</b> |

| Question | Answer                                                                                                    | Marks |
|----------|-----------------------------------------------------------------------------------------------------------|-------|
| 5(a)     | work done per unit charge                                                                                 | B1    |
|          | (work done on charge) moving positive charge from infinity                                                | B1    |
| 5(b)(i)  | $(2.0 \times 10^{-9}) / 4\pi\epsilon_0(4.0 \times 10^{-2}) + Q / 4\pi\epsilon_0(8.0 \times 10^{-2}) = 0$  | C1    |
|          | $Q = 4.0 \times 10^{-9} \text{ C}$                                                                        | A1    |
|          | Q given with negative sign                                                                                | B1    |
| 5(b)(ii) | change = 1200 V                                                                                           | A1    |
| 5(c)     | $\frac{1}{2}mv^2 = qV$                                                                                    | C1    |
|          | $\frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2 = 2 \times 1.60 \times 10^{-19} \times 1200$ | C1    |
|          | $v = 3.4 \times 10^5 \text{ m s}^{-1}$                                                                    | A1    |

| Question | Answer                                                                                                                                                          | Marks |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)(i)  | charge per unit potential (difference)                                                                                                                          | M1    |
|          | charge on one plate <u>and</u> potential difference across the plates                                                                                           | A1    |
| 6(a)(ii) | any three points from:<br>• smoothing<br>• timing/(time) delay<br>• tuning<br>• oscillator<br>• blocking d.c.<br>• surge protection<br>• temporary power supply | B3    |
| 6(b)     | (capacitors in series have combined capacitance =) $8 \mu\text{F}$                                                                                              | C1    |
|          | capacitance = $8 + 24$<br>$= 32 \mu\text{F}$                                                                                                                    | A1    |

| Question | Answer                                                                                                                                                                                     | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7(a)     | two resistors connected in series between earth and positive of battery and no extra connections                                                                                           | B1    |
|          | one resistor and thermistor connected in series between earth and positive of battery and no extra connections                                                                             | B1    |
|          | midpoints of the two potential dividers connected, one each, to the op-amp input terminals                                                                                                 | B1    |
|          | thermistor in correct place in potential divider circuit<br>(either the upper part of the potential divider leading to $V^+$ or the lower part of the potential divider leading to $V^-$ ) | B1    |
| 7(b)(i)  | value greater than $1000 \Omega$                                                                                                                                                           | A1    |
| 7(b)(ii) | non-zero value less than $1000 \Omega$                                                                                                                                                     | A1    |

| Question | Answer                                                                                                                           | Marks     |
|----------|----------------------------------------------------------------------------------------------------------------------------------|-----------|
| 8(a)(i)  | downwards                                                                                                                        | <b>B1</b> |
| 8(a)(ii) | PQRS and JKLM                                                                                                                    | <b>B1</b> |
| 8(b)     | (as charge separates) an electric field is created (between opposite faces)                                                      | <b>B1</b> |
|          | (maximum value is reached when) electric force (on electron) is equal and opposite to magnetic force (on electron)               | <b>B1</b> |
| 8(c)     | $V_H = BI / ntq$                                                                                                                 | <b>C1</b> |
|          | $= (4.6 \times 10^{-3} \times 6.3 \times 10^{-4}) / (1.3 \times 10^{29} \times 0.10 \times 10^{-3} \times 1.60 \times 10^{-19})$ |           |
|          | $= 1.4 \times 10^{-12} \text{ V}$                                                                                                | <b>A1</b> |
| 8(d)     | semiconductors have a (much) smaller value for $n$                                                                               | <b>B1</b> |
|          | $V_H$ for semiconductors is (much) larger so more easily measured                                                                | <b>B1</b> |

| Question | Answer                                                             | Marks       |
|----------|--------------------------------------------------------------------|-------------|
| 9(a)     | flux density $\times$ area                                         | <b>M1</b>   |
|          | where flux is normal to area                                       | <b>A1</b>   |
|          | or                                                                 |             |
|          | flux density $\times$ area $\times \sin \theta$                    | <b>(M1)</b> |
|          | where $\theta$ is angle between flux direction and (plane of) area | <b>(A1)</b> |
| 9(b)(i)  | (alternating) current creates changing (magnetic) flux             | <b>B1</b>   |
|          | core links (magnetic) flux with secondary coil                     | <b>B1</b>   |
|          | changing flux (in secondary) causes induced e.m.f.                 | <b>B1</b>   |
| 9(b)(ii) | rate of change of flux is not constant                             | <b>B1</b>   |
|          | (induced) e.m.f. is proportional to rate of change of flux         | <b>B1</b>   |
| 9(c)     | reduces induced currents in core                                   | <b>B1</b>   |
|          | hence reduces energy losses (in core)                              | <b>B1</b>   |

| Question | Answer                                                                                                                                                                                                   | Marks     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 10(a)    | X-rays are used                                                                                                                                                                                          | <b>B1</b> |
|          | section (of object) is scanned                                                                                                                                                                           | <b>B1</b> |
|          | scans/images taken at many angles/directions<br><b>or</b><br>images of each section are 2-dimensional                                                                                                    | <b>B1</b> |
|          | (images of (many)) sections are combined                                                                                                                                                                 | <b>B1</b> |
|          | (to give) 3-dimensional image of (whole) structure                                                                                                                                                       | <b>B1</b> |
| 10(b)    | K = 6<br>L = 7<br>M = 2<br>N = 9<br><br>3 marks: all four correct<br>2 marks: three correct and one incorrect <b>or</b> all correct with two numbers transposed<br>1 mark: two correct and two incorrect | <b>B3</b> |

| Question  | Answer                                                                                                                                                                                                                                                                                                                        | Marks     |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 11(a)(i)  | quantum of energy                                                                                                                                                                                                                                                                                                             | <b>M1</b> |
|           | of electromagnetic radiation                                                                                                                                                                                                                                                                                                  | <b>A1</b> |
| 11(a)(ii) | arrow (on Fig. 11.1) pointing upwards and to the right                                                                                                                                                                                                                                                                        | <b>B1</b> |
| 11(b)(i)  | $\lambda = h / p$                                                                                                                                                                                                                                                                                                             | <b>C1</b> |
|           | $p = (6.63 \times 10^{-34}) / (544 \times 10^{-9})$                                                                                                                                                                                                                                                                           | <b>A1</b> |
|           | $= 1.22 \times 10^{-27} \text{ N s}$                                                                                                                                                                                                                                                                                          |           |
| 11(b)(ii) | $\text{energy} = hc / \lambda$                                                                                                                                                                                                                                                                                                | <b>C1</b> |
|           | $= 6.63 \times 10^{-34} \times 3.00 \times 10^8 \times (540^{-1} - 544^{-1}) \times 10^9$                                                                                                                                                                                                                                     | <b>A1</b> |
|           | $= 2.7 \times 10^{-21} \text{ J}$                                                                                                                                                                                                                                                                                             |           |
| 11(c)     | (smaller wavelength corresponds to) greater photon energy                                                                                                                                                                                                                                                                     | <b>B1</b> |
|           | any one point from: <ul style="list-style-type: none"><li>• (deflected) photon loses energy (so not possible)</li><li>• (deflected) photon would need to gain energy (so not possible)</li><li>• electron would need to lose energy (so not possible)</li><li>• initially electron energy is zero (so not possible)</li></ul> | <b>B1</b> |

| Question  | Answer                                                  | Marks     |
|-----------|---------------------------------------------------------|-----------|
| 12(a)(i)  | unstable nucleus                                        | <b>B1</b> |
|           | emits ionising radiation <b>or</b> decays spontaneously | <b>B1</b> |
| 12(a)(ii) | probability of decay (of a nucleus)                     | <b>M1</b> |
|           | per unit time                                           | <b>A1</b> |
| 12(b)     | $A = \lambda N$                                         | <b>C1</b> |
|           | $560 = 9.9 \times 10^{-7} \times N$                     | <b>A1</b> |
|           | $N = 5.7 \times 10^8$                                   |           |
| 12(c)     | $A = A_0 e^{-\lambda t}$                                | <b>C1</b> |
|           | $170 = 560 \exp(-9.9 \times 10^{-7} \times t)$          |           |
|           | $t = 1.2 \times 10^6 \text{ s}$                         | <b>C1</b> |
|           | $= 14 \text{ days}$                                     | <b>A1</b> |