

Question	Answer	Marks
1(a)	work done per unit mass (work done) moving mass from infinity (to the point)	B1 B1
1(b)(i)	gravitational potential energy = $(-GMm/r)$ $\Delta E_P = 6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 2.4 \times 10^3 \times [(6.4 \times 10^6)^{-1} - (1.2 \times 10^7)^{-1}]$ or $\Delta\phi = 6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times [(6.4 \times 10^6)^{-1} - (1.2 \times 10^7)^{-1}]$ $\Delta E_P = m\Delta\phi$ $\Delta E_P = 7.0 \times 10^{10} \text{ J}$	C1 C1 (C1) (C1) A1
1(b)(ii)	$GMm/r^2 = mv^2/r$ $v^2 = GM/r$ $= (6.67 \times 10^{-11} \times 6.0 \times 10^{24}) / (1.2 \times 10^7)$ $v = 5800 \text{ m s}^{-1}$	C1 C1 A1
1(c)	any one point from: <ul style="list-style-type: none">smaller gain in energy required if orbit is west to eastsmaller change in velocity if orbit is west to eastsmaller gain in energy if orbit is in same direction as Earth's rotationsmaller change in velocity if orbit is in same direction as Earth's rotationsatellite already moving west to east at launchEarth's rotation is from west to east	B1

Question	Answer	Marks
2(a)	sum of potential energy and kinetic energy (of particles)	B1
	(total) energy of random motion of particles	B1
2(b)(i)	$pV = nRT$	C1
	$2.60 \times 10^5 \times 2.30 \times 10^{-3} = n \times 8.31 \times 180$	A1
	$n = 0.400 \text{ mol}$	
2(b)(ii)	$(2.30 \times 10^{-3}) / 180 = (3.80 \times 10^{-3}) / T$ or $2.60 \times 10^5 \times 3.80 \times 10^{-3} = 0.400 \times 8.31 \times T$	C1
	$T = 297 \text{ K}$	A1
	$\Delta W = p\Delta V$ $= 2.60 \times 10^5 \times (2.30 - 3.80) \times 10^{-3}$	C1
	$= (-)390 \text{ J}$	A1
2(c)(i)	negative because work is done by gas or negative because work is done against atmospheric pressure or negative because volume of gas increases	B1
2(c)(ii)	$\Delta U = (980 - 390)$ $= 590 \text{ J}$	A1

Question	Answer	Marks
3(a)	acceleration (directly) proportional to displacement acceleration is in opposite <u>direction</u> to displacement or acceleration is (directed) towards a fixed point	B1
3(b)(i)	zero	B1
3(b)(ii)	E_T is maximum potential energy = mgh $E_T = 94 \times 10^{-3} \times 9.81 \times 0.90 \times 10^{-2}$ $= 8.3 \times 10^{-3} \text{ J}$	C1
3(b)(iii)	$E_{MAX} = \frac{1}{2} mv_0^2$ and $v_0 = \omega x_0$ or $E_{MAX} = \frac{1}{2} m(\omega x_0)^2$ $8.3 \times 10^{-3} = \frac{1}{2} \times 94 \times 10^{-3} \times \omega^2 \times (12.7 \times 10^{-2})^2$...leading to $\omega = 3.3 \text{ rad s}^{-1}$	C1
3(c)	$T = 2\pi / \omega$	C1
	$2\pi / 3.3 = 2\pi \times (L / 9.81)^{\frac{1}{2}}$	C1
	$L = 0.90 \text{ m}$	A1

Question	Answer	Marks
4(a)	any two points from: <ul style="list-style-type: none"> • signal can be regenerated/noise can be removed • signal can be encrypted • signal can be checked for errors • multiplexing is possible • <u>circuits</u> are more reliable/cheaper • <u>data</u> can be transmitted at a greater <u>rate</u> 	B2
4(b)(i)	right-hand zero underlined (011 <u>0</u>)	B1
4(b)(ii)	analogue signals given as: 3.0, 4.8, 1.0 0011 at 0.30 ms and 0001 at 0.50 ms 0100 at 0.40 ms	B1 B1 B1
4(c)	series of steps, all of width 0.1 ms steps levels, in order, at output voltage 0, 5, 6, 3 and 4 mV 2 marks: all levels correct 1 mark: one level incorrect and all others correct or one level omitted and last step shown at 1 mV	B1 B2

Question	Answer	Marks
5(a)(i)	region (of space)	B1
	where a particle experiences a force	B1
5(a)(ii)	similarity – any one point from: <ul style="list-style-type: none">• both have an inverse square variation• both decrease with distance• both are radial	B1
	difference – any one point from: <ul style="list-style-type: none">• gravitational field always towards (the mass)• electric field can be towards or away from (the charge)	B1
5(b)(i)	$E = Q / 4\pi\epsilon_0 x^2$	C1
	$Q = 4\pi \times 8.85 \times 10^{-12} \times 84 \times 0.15^2$ $= 2.1 \times 10^{-10} \text{ C}$	A1
5(b)(ii)	$E = 84 \times (0.15 / 0.45)^2$ or $E = (2.1 \times 10^{-10}) / (4\pi \times 8.85 \times 10^{-12} \times 0.45^2)$	C1
	$E = 9.3 \text{ V m}^{-1}$	A1
5(c)	line at $E = 0$ from $x = 0$ to $x = 0.15 \text{ m}$	B1
	smooth curve with decreasing negative gradient throughout, from $x = 0.15 \text{ m}$ to $x = 0.45 \text{ m}$, passing through $(0.15, 84)$	B1
	line passing through $(0.45, 9.3)$	B1

Question	Answer	Marks
6(a)(i)	charge per unit potential (difference)	M1
	charge on one plate and potential difference between the plates	A1
6(a)(ii)	any three points from: • smoothing • timing/(time) delaying • tuning • oscillator • blocking d.c. • surge protection • temporary power supply	B3
6(b)(i)	parallel combination of two in series and a single capacitor	B1
6(b)(ii)	one capacitor in series with two in parallel	B1

Question	Answer	Marks
7(a)	X-ray photon produced when electron is decelerated	B1
	larger acceleration results in larger photon energy	B1
	continuous range of accelerations so continuous spectrum of wavelengths/frequencies	B1
7(b)	electron in (inner shell of) target atom is excited (on collision)	B1
	electron de-excites causing emission of a photon	B1
	discrete energy levels so discrete photon wavelengths	B1

Question	Answer	Marks
8(a)(i)	gain is the same for all frequencies	B1
8(a)(ii)	no (time) delay in change in output when input is changed	B1
8(b)(i)	(at saturation,) $V_{OUT} = 5.0 \text{ V}$	C1
	gain = $5.0 / 0.40$ = 12.5 or 13	A1
8(b)(ii)	$12.5 = 1 + (R / 800)$	C1
	$R = 9200 \Omega$	A1

Question	Answer	Marks
9(a)(i)	(induced) e.m.f. (directly) proportional to rate of change of magnetic flux (linkage)	M1 A1
9(a)(ii)	e.m.f. = 0 apart from thin pulses at t_1 and t_2	B1
	rectangular pulses centred on t_1 and t_2 , of widths 2 small squares and 1 small square respectively	B1
	e.m.fs. at t_1 and t_2 have opposite polarities	B1
	magnitude of e.m.f. at t_2 double the magnitude of e.m.f. at t_1	B1
9(b)	V_H shown as zero before $(t_1 - 2 \text{ squares})$ and after $(t_2 + 2 \text{ squares})$ and rises to a constant non-zero value between t_1 and t_2	M1
	change at t_1 shown as 2 small squares wide and change at t_2 shown as 1 small square wide	A1

Question	Answer	Marks
10(a)	concentric circles centred on the wire	B1
	separation of lines increasing with distance from wire	B1
	arrows show anti-clockwise direction	B1
10(b)(i)	current in (each) wire creates a magnetic field (at the other wire)	B1
	current (in wire) at 90° to field causes force	B1
10(b)(ii)	force on each wire towards other wire/attractive	B1
10(c)	Newton's third law pair of forces so yes (forces are equal) or force proportional to product of both currents so yes (forces are equal)	B1

Question	Answer	Marks
11(a)	any two points from: <ul style="list-style-type: none">• (maximum) kinetic energy of electrons is independent of intensity• maximum kinetic energy of electrons depends on frequency• no time delay (between illumination and emission)	B2
11(b)(i)	(for $E_{MAX} = 0$,) $1/\lambda_0 = 1.93 \times 10^6 \text{ (m}^{-1}\text{)}$ $f_0 = 3.00 \times 10^8 \times 1.93 \times 10^6$ $= 5.8 \times 10^{14} \text{ Hz}$	C1 A1
11(b)(ii)	$hc/\lambda = \Phi + E_{MAX}$ $hc = \text{gradient}$ gradient = e.g. $[(0.40 - 0.20) \times 1.60 \times 10^{-19}] / [(2.25 - 2.09) \times 10^6]$ (<i>working needed</i>) $(= 2.0 \times 10^{-25})$ $h = (2.0 \times 10^{-25}) / (3.00 \times 10^8) = 6.7 \times 10^{-34} \text{ J s}$ (<i>both working and answer needed</i>)	C1 C1 M1 A1
11(c)	straight line with same gradient as the original straight line with x-axis intercept greater than $1.93 \times 10^6 \text{ m}^{-1}$	B1 B1

Question	Answer	Marks
12(a)(i)	energy required to separate nucleons (of nucleus)	M1
	to infinity	A1
12(a)(ii)	a (single) large nucleus <u>divides</u> to form (smaller) nuclei	B1
	any one point from: • initiated by neutron bombardment • resulting nuclei are of similar size • binding energy per nucleon increases • total binding energy increases • neutrons released • combined mass of smaller nuclei is less than mass of large nucleus	B1
12(b)	binding energy per nucleon is a maximum at around $A = 56$	B1
	products of splitting a ^{56}Fe nucleus must have a lower total binding energy	B1
	(reaction would require) a net input of energy	B1