

^	Indicates where more is needed for a mark to be awarded (what is written is not wrong, but not enough). May also be used to annotate a response space that has been left completely blank.
SEEN	Indicates that a page has been seen.

Question	Answer	Marks
1(a)	work done per unit mass	B1
	(work done to) move mass from infinity (to the point)	B1
1(b)	curve from r to $4r$, with gradient of decreasing magnitude and starting at $(r, \pm\phi)$	B1
	line passing through $(2r, \pm 0.5\phi)$ and $(4r, \pm 0.25\phi)$	B1
	line showing potential is negative throughout	B1
1(c)(i)	gravitational potential energy = $(-) GMm / R$	C1
	change = $(6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 3.4 \times 10^3) / (6.4 \times 10^6) \times [1/3 - 1/4]$	C1
	$= 1.8 \times 10^{10} \text{ J}$	A1
1(c)(ii)	rock loses potential energy	B1
	(so) kinetic energy increases so speed increases	B1
	or	
	force is attractive	(B1)
	moves towards planet so speeds up	(B1)

Question	Answer	Marks
2(a)	$\rho: Nm / V$	B1
	$\frac{1}{3}$: molecules move in three dimensions (not one) so $\frac{1}{3}$ in any (one) direction	B1
	$\langle c^2 \rangle$: molecules have different speeds so take average of (speed) ²	M1
		A1
2(b)	$pV = NkT$	C1
	$N = (3.0 \times 10^5 \times 6.0 \times 10^{-3}) / (1.38 \times 10^{-23} \times 290)$	C1
	$= 4.5 \times 10^{23}$	C1
	mass $= 20.7 / (4.5 \times 10^{23})$	A1
	$= 4.6 \times 10^{-23} \text{ g}$	

Question	Answer	Marks
3(a)	(little/no volume change so) little/no external work done	B1
	thermal energy supplied to provide latent heat	M1
	internal energy increases	A1
3(b)	(rapid) increase in volume	B1
	gas does work against the atmosphere	M1
	internal energy decreases	A1

Question	Answer	Marks
4(a)	$(\omega = 2\pi / T \text{ and } T = 2.2 \text{ s so})$ $\omega = 2\pi / 2.2 = 2.9 \text{ rad s}^{-1}$	A1
4(b)(i)	$\omega^2 = g / R$	C1
	$R = 9.81 / 2.86^2$ $= 1.2 \text{ m}$	A1
4(b)(ii)	$v_0 = \omega x_0$	C1
	$= 2.9 \times 3.0 \times 10^{-2}$ $= 0.087 \text{ m s}^{-1}$	A1
4(c)	smooth wave starting at 3.0 cm when $t = 0$	B1
	positions of peaks and troughs show same period (or slightly longer)	B1
	each peak and trough at lower amplitude than the previous one	B1

Question	Answer	Marks
5(a)	pulses of ultrasound	B1
	ultrasound incident on quartz crystal	B1
	waves make crystal oscillate	B1
	oscillations (of crystal) generates an e.m.f. (across the crystal)	B1
5(b)	specific acoustic impedances of air and skin are very different	B1
	intensity reflection coefficient depends on difference between acoustic impedance	B1
	most ultrasound reflected so little transmission	B1

Question	Answer	Marks
6(a)	<ul style="list-style-type: none"> • greater bandwidth • less noise • less attenuation or fewer repeaters • less crosslinking or greater security <p><i>Any three points, 1 mark each</i></p>	B3
6(b)(i)	$\text{ratio / dB} = 10 \lg(P_1 / P_2)$ $21 = 10 \lg [(6.3 \times 10^{-17}) / P]$ $P = 5.0 \times 10^{-19} \text{ W}$	C1 A1
6(b)(ii)	attenuation per unit length $= (1 / 4.5 \times 10^3) \times 10 \lg [(9.8 \times 10^{-3}) / (6.3 \times 10^{-17})]$ $= 0.032 \text{ dB km}^{-1}$	C1 A1

Question	Answer	Marks
7(a)	force per unit charge	M1
	(force on) positive charge	A1
7(b)(i)	no electric field inside a conductor	B1
	$R = 4.5 \text{ cm}$	A1
7(b)(ii)	$E = Q / (4\pi\epsilon_0 x^2)$	C1
	clear correct read-off of a pair of values of E and x	C1
	e.g. $Q = 18 \times 10^5 \times 4\pi \times 8.85 \times 10^{-12} \times (4.5 \times 10^{-2})^2$ $= 4.0 \times 10^{-7} \text{ C}$ or $4.1 \times 10^{-7} \text{ C}$	A1
7(c)	At 8.0 cm, $E = 5.75 \times 10^5 \text{ V m}^{-1}$	C1
	$F = Eq$ and $a = F/m$	C1
	$F = (5.75 \times 10^5 \times 2 \times 1.6 \times 10^{-19}) / (4 \times 1.66 \times 10^{-27})$ $= 2.8 \times 10^{13} \text{ m s}^{-2}$	A1

Question	Answer	Marks
8(a)(i)	constant gain for all frequencies	B1
8(a)(ii)	unchanged	B1
8(b)(i)	(open loop) gain of op-amp is infinite	B1
	feedback loop ensures $V^+ \approx V^-$ or any difference between V^+ and V^- results in saturated output	B1
	non-inverting input is 0 V so inverting input also at 0 V	B1
8(b)(ii)	input = $(40 \times 1.5) / (40 + 110)$	C1
	= 0.40 V	A1
8(b)(iii)	gain = $(-) (100 + 230) / 150$ or feedback current = $0.40 / (150 \times 10^3)$ (A)	C1
	p.d. = $[(100 + 230) / 150] \times 0.40$ = 0.88 V	A1
8(c)	(magnitude of) gain decreases	M1
	voltmeter reading decreases	A1

Question	Answer	Marks
9(a)(i)	force is downwards/down the page or current is (right) to left	B1
	by left-hand rule, field is into plane of paper	B1
9(a)(ii)	magnetic force provides the centripetal force	C1
	$Bqv = mv^2 / r$	C1
	$v = Bqr / m$ $= (8.0 \times 10^{-4} \times 1.60 \times 10^{-19} \times 6.4 \times 10^{-2}) / (9.11 \times 10^{-31})$ $= 9.0 \times 10^6 \text{ m s}^{-1}$	A1
	arrow showing field direction down the page	B1
9(b)(i)	$Bqv = Eq$ or $v = E / B$	C1
	$E = 9.0 \times 10^6 \times 8.0 \times 10^{-4}$ $= 7.2 \times 10^3 \text{ N C}^{-1}$	A1
9(c)	straight line/undeviated	B1
	condition for no deflection depends only on v or condition for no deflection does not depend on m or q	B1

Question	Answer	Marks
10(a)	(induced) electromotive force is proportional to rate	M1
	of change of (magnetic) flux (linkage)	A1
10(b)(i)	to change magnitude of potential difference	B1
10(b)(ii)	magnitude of e.m.f. varies as rate of change of flux changes	B1
	direction of e.m.f. changes when direction of change of flux reverses/when flux changes from increasing to decreasing	B1
	flux is continuously increasing and decreasing, so polarity of e.m.f. is continuously switching	B1
10(b)(iii)	to reduce energy/power losses or to reduce eddy currents	B1

Question	Answer	Marks
11(a)	conduction band and valence band overlap	B1
	number (density) of charge carriers does not vary	B1
	increase in temperature gives rise to <u>increased</u> lattice vibrations	B1
	(lattice) vibrations hinder movement of charge carriers so resistance increases	B1
11(b)	$mv = h / \lambda$	C1
	$v = (6.63 \times 10^{-34}) / [(2.6 \times 10^{-11}) \times (9.11 \times 10^{-31})]$ $(= 2.80 \times 10^7 \text{ m s}^{-1})$	C1
	$qV = \frac{1}{2}mv^2$	C1
	$V = [9.11 \times 10^{-31} \times (2.80 \times 10^7)^2] / [2 \times 1.60 \times 10^{-19}]$ $= 2.2 \times 10^3 \text{ V}$	A1

Question	Answer	Marks
12(a)	difference between mass of nucleus and mass of (constituent) nucleons	M1
	where nucleons are separated to infinity	A1
12(b)(i)	$E = mc^2$	C1
	$= 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2 / (1.60 \times 10^{-13}) = 934 \text{ MeV}$	A1
12(b)(ii)	mass defect = $2 \times (1.007276 + 1.008665) - 4.001506$ $(= 0.030376)$	B1
	binding energy per nucleon = $(0.030376 \times 934) / 4 = 7.09 \text{ MeV}$	A1
12(c)	binding energy per nucleon is much greater	M1
	so would require a large amount of energy to separate the nucleons in helium	A1
	or	
	amount of energy released in forming hydrogen isotopes	(M1)
	is less than energy required to break apart helium nucleus	(A1)