

^	Indicates where more is needed for a mark to be awarded (what is written is not wrong, but not enough). May also be used to annotate a response space that has been left completely blank.
SEEN	Indicates that a page has been seen.

Question	Answer	Marks
1(a)	similarity: both have magnitude	B1
	difference: distance is a scalar/does not have direction or displacement is a vector/has direction	B1
1(b)(i)	the measurements have a small range	B1
1(b)(ii)	the (average of the) measurements is not close to the true value	B1

Question	Answer	Marks
2(a)	a body continues at (rest or) constant velocity unless acted upon by a resultant force	B1
2(b)(i)	$\text{distance} = [\frac{1}{2} \times (2.0 + 4.4) \times 3.0] + [4.4 \times 2.0]$ $= 9.6 + 8.8$ $= 18 \text{ m}$	C1
2(b)(ii)	$a = (v - u) / t \text{ or gradient or } \Delta v / (\Delta t)$ $\text{e.g. } a = (4.4 - 2.0) / 3.0 = 0.80 \text{ m s}^{-2}$	C1
2(b)(iii)	<ol style="list-style-type: none"> 1. force = $240 \cos 28^\circ$ or $240 \sin 62^\circ$ $= 210 \text{ N}$ 2. resultant force = 89×0.80 (= 71.2 N) $R = 210 - 71$ $= 140 \text{ N}$	A1
2(b)(iv)	$T \sin 45^\circ = mg$ $T = (89 \times 9.81) / \sin 45^\circ$ $= 1200 \text{ N}$	C1

Question	Answer	Marks
3(a)	for a body in (rotational) equilibrium	B1
	sum/total of clockwise moments about a point = sum/total of anticlockwise moments about the (same) point	B1
3(b)(i)	$(W \times 0.45)$ or (19×1.3) or $(W \times 1.85)$ or (22×2.6)	C1
	$(W \times 0.45) + (19 \times 1.3) + (W \times 1.85) = (22 \times 2.6)$ so $W = 14 \text{ N}$	A1
3(b)(ii)	$\text{magnitude} = 19 + 14 + 14 - 22$ $= 25 \text{ N}$	A1
	direction: vertically upwards	A1
3(c)(i)	the extension is zero when the force is zero	B1
	graph is a straight line and (so) Hooke's law obeyed	B1
3(c)(ii)	$k = F / x$ or $k = \text{gradient}$	C1
	e.g. $k = 60 / (1.00 - 0.25)$ $k = 80 \text{ N m}^{-1}$	A1
3(c)(iii)	area shaded below graph line between $L = 0.25 \text{ m}$ and $L = 0.75 \text{ m}$	B1

Question	Answer	Marks
4(a)(i)	frequency or period	B1
4(a)(ii)	amplitude	B1
4(b)	constant phase difference so coherent	B1
4(c)	120°	B1
4(d)	resultant displacement $= 4.0 \mu\text{m} - 1.0 \mu\text{m}$ $= 3.0 \mu\text{m}$	B1
4(e)	$I \propto A^2$	C1
	intensity of Z $= (2^2 / 4^2) I$ $= 0.25 I$	A1
4(f)	$v = \lambda / T$ or $v = f\lambda$ and $f = 1 / T$	C1
	$330 = \lambda / 3.0 \times 10^{-3}$	C1
	$\lambda = 0.99 \text{ m}$	A1

Question	Answer	Marks
5(a)	joule per coulomb	B1
5(b)(i)	$1/R = 1/R_1 + 1/R_2$ $= 1/300 + 1/200$ $R = 75 \Omega$	A1
5(b)(ii)	$R = 75 + 55$ $= 130 \Omega$	A1
5(c)(i)	1. $P = I^2R$ or $P = VI$ and $V = IR$	C1
	$I = (0.20 / 55)^{0.5}$ $= 0.060 \text{ A}$	A1
	2. $I = 0.060 / 4$ $= 0.015 \text{ A}$	A1
5(c)(ii)	potential difference $= 130 \times 0.060$ $= 7.8 \text{ V}$	A1
	or	
	potential difference $= (300 \times 0.015) + (55 \times 0.060)$ $= 7.8 \text{ V}$ (<i>other valid methods are also possible</i>)	(A1)

Question	Answer	Marks
6(a)	A: cross-sectional area	B1
	n : number density of <u>free</u> electrons	B1
6(b)	units of I : A and units of A : m^2 and units of v : ms^{-1}	B1
	units of e : $A / (\text{m}^2 \text{ m}^{-3} \text{ m s}^{-1}) = \text{As}$	A1
6(c)	ratio = A_Q / A_P	C1
	$= [\pi r^2] / [\pi(2r^2)]$ = 0.25	A1

Question	Answer	Marks
7(a)(i)	$E = V/d$ or $E = F/Q$	C1
	$F = (450 \times 1.60 \times 10^{-19}) / 6.0 \times 10^{-3}$	C1
	$= 1.2 \times 10^{-14} \text{ N}$	A1
	direction: vertically downwards	B1

Question	Answer	Marks
7(a)(ii)	work done = Fs or Fd or EQd $= (-)1.2 \times 10^{-14} \times 6.0 \times 10^{-3}$ $= (-)7.2 \times 10^{-17} \text{ J}$	C1
	or	A1
	work done = VQ $= (-)450 \times 1.60 \times 10^{-19}$ $= (-)7.2 \times 10^{-17} \text{ J}$	(C1)
		(A1)
7(b)	$E = \frac{1}{2}mv^2$	C1
	$3.4 \times 10^{-16} = \frac{1}{2} \times 9.11 \times 10^{-31} \times v^2$	A1
	$v = 2.7 \times 10^7 \text{ m s}^{-1}$	
7(c)(i)	1_1p	A1
	$^0_{-1}V^{(e)}$	A1
7(c)(ii)	1. hadrons	B1
	2. leptons	B1