۸	Indicates where more is needed for a mark to be awarded (what is written is not wrong, but not enough). May also be used to annotate a response space that has been left completely blank.	
SEEN	Indicates that a page has been seen.	

Question	Answer	Marks
1(a)	(velocity =) change in displacement / time (taken)	B1
1(b)	units of <i>F</i> : kg m s ⁻²	C1
	units of k: $kg m s^{-2}/[m^2 \times (m s^{-1})^2]$ = $kg m^{-3}$	A1
1(c)	P = Fv	C1
	$4.8 \times 10^4 = 0.24 \times 5.1 \times v^3$	C1
	$v = 34 \text{ m s}^{-1}$	A1

Question	Answer	Marks
2(a)(i)	area = $ut + \frac{1}{2}(v - u)t$ or area = $vt - \frac{1}{2}(v - u)t$ or area = $\frac{1}{2}(u + v)t$	A1
2(a)(ii)	displacement	A1
2(b)(i)	$u = 15 \sin 60^{\circ} (= 13 \text{ m s}^{-1})$	C1
	$t = 15 \sin 60^{\circ} / 9.81$	C1
	= 1.3 s	A1
2(b)(ii)	the force in the horizontal direction is zero	В1
2(b)(iii)	(velocity =) $15 \cos 60^{\circ} = 7.5 \text{ (m s}^{-1)}$ or (velocity =) $15 \sin 30^{\circ} = 7.5 \text{ (m s}^{-1)}$	A1
2(c)(i)	$p = mv$ or 0.40×7.5 or 0.40×4.3	C1
	$\Delta p = 0.40 (7.5 + 4.3)$	A 1
	$= 4.7 \text{ kg m s}^{-1}$	
2(c)(ii)	force = $4.7/0.12$ or $0.40 \times [(7.5 + 4.3)/0.12]$	A1
	= 39 N	

Question	Answer	Marks
3(a)	(work done =) force × displacement in direction of the force	B1
3(b)(i)	1. $(\Delta)E = mg(\Delta)h$	C1
	= 0.42 × 9.81 × 78	A1
	= 320 J	
	2. $E = \frac{1}{2}mv^2$	C1
	$(\Delta)E = \frac{1}{2} \times 0.42 \times 23^2$	A1
	= 110 J	
3(b)(ii)	work done = 320 – 110 (= 210 N)	C1
	average resistive force = 210 / 78	A1
	= 2.7 N	
3(c)	downward sloping line from $(0, g)$ to a non-zero value on the time axis	M1
	line is curved with a gradient that becomes less negative and the line meets <i>t</i> -axis at time <i>t</i> < <i>T</i>	A1

Question	Answer	Marks
4(a)	progressive waves transfer energy	B1
	or stationary waves do not transfer energy	
4(b)(i)	0.32 m	A1
4(b)(ii)	$v = \lambda / T$	C1
	or $v = f\lambda$ and $f = 1/T$	
	$v = 0.32/0.020$ or 50×0.32	A1
	$= 16 \mathrm{m s^{-1}}$	
4(b)(iii)	450° or 90°	A1
4(b)(iv)	(P has) maximum downward displacement at 0.005 s	B1
	returns to original position/point (at 0.010 s)	B1
4(c)(i)	(position where) zero amplitude	B1
4(c)(ii)	2	A1
4(c)(iii)	180°	A1
4(c)(iv)	string drawn between X and Y with one antinode midway along the string	B1

Question	Answer	Marks
5(a)	Hooke's (law)	B1
5(b)(i)	$\sigma = F/A$	C1
	$= 36/(4.1 \times 10^{-7})$	A1
	$= 8.8 \times 10^7 \text{Pa}$	
5(b)(ii)	Young modulus = σ/ε or $F/A\varepsilon$	C1
	$\varepsilon = 8.8 \times 10^7 / (1.7 \times 10^{11})$	A1
	= 5.2 × 10 ⁻⁴	
5(c)	$R = \rho L / A$	C1
	$\Delta R = \rho \Delta x / A$	C1
	$= 3.7 \times 10^{-7} \times 0.12 \times 10^{-3} / (4.1 \times 10^{-7})$	
	$= 1.1 \times 10^{-4} \Omega$	A1
5(d)	remove the force/F and wire returns to original length	B1

Question	Answer	Marks
6(a)(i)	energy is dissipated in the internal resistance/r	B1
6(a)(ii)	1. $I = Q/t$	C1
	= 750 / 1500	A1
	= 0.50 A	
	2. $V = W/Q$ or $V = W/It$	C1
	= 5700 / 750 or 5700 / (0.50 × 1500)	A1
	= 7.6 V	
	or	
	V = P/I and $P = W/t$	(C1)
	V = 3.8/0.50	(A1)
	= 7.6 V	
	3. $r = (7.8 - 7.6) / 0.50$	C1
	= 0.40Ω	A1
6(b)(i)	90 Ω and 45 Ω resistors shown connected in parallel	B1
6(b)(ii)	the resistors connected in parallel labelled as 90 Ω and 45 Ω with the other resistor labelled as 20 Ω	M1
	V_{OUT} or 3.6 V labelled across the 20 Ω resistor	A1

Question	Answer	Marks
7(a)(i)	P = 0 and Q = 39	A 1
	R = (+)1 and $S = 20$	A 1
7(a)(ii)	weak (nuclear force/interaction)	B1
7(b)	charge of quark(s) = (+) 2e/3	B1
	up/u (quarks)	B1