

Question	Answer	Marks
1(a)	work done per unit mass	B1
	work done moving mass from infinity (to the point)	B1
1(b)(i)	gravitational force provides centripetal force	C1
	$mv^2 / r = GMm / r^2$ and $v = 2\pi r / T$ OR $mr\omega^2 = GMm / r^2$ and $\omega = 2\pi / T$ OR $r^3 = GMT^2 / 4\pi^2$	C1
	$r^3 = 6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (13.7 \times 24 \times 3600)^2 / 4\pi^2$ so $r = 2.4 \times 10^8$ m	A1
1(b)(ii)	$(E_p = -) GMm / r$ work done = $GMm / r_1 - GMm / r_2$	C1
	$= 6.67 \times 10^{-11} \times 360 \times 6.0 \times 10^{24} (1/6.4 \times 10^6 - 1/2.4 \times 10^8)$	C1
	$= 2.2 \times 10^{10}$ J	A1
1(b)(iii)	$g = GM / r^2$	C1
	ratio = r_{TESS}^2 / r_{earth}^2 $= (2.4 \times 10^8 / 6.4 \times 10^6)^2$ $= 1400$	A1

Question	Answer	Marks
2(a)	$n = 110 / 0.032$ or $110000 / 32$ or 3440	C1
	$pV = nRT$	C1
	$T = (1.0 \times 10^5 \times 85) / (8.31 \times (110 / 0.032)) = 300 \text{ K}$	A1
2(b)	$E = mc\Delta\theta$ $= 110 \times 0.66 \times 50$	C1
	$= 3600 \text{ J}$	A1
	Any 3 from: <ul style="list-style-type: none">• molecule collides with wall• momentum of molecule changes during collision (with wall)• force on molecule so force on wall• many forces act over surface area of container exerting a pressure	B3
2(d)	$KE \propto T$ $v \propto \sqrt{T}$	C1
	ratio $= \sqrt{(350 / 300)}$ $= 1.1$	A1

Question	Answer	Marks
3(a)(i)	0.050 m	A1
3(a)(ii)	$\omega = v_0 / x_0$	C1
	$T = 2\pi / \omega$	C1
	$0.42 = (2\pi \times 0.050) / T$	
	$T = 0.75 \text{ s}$	A1
3(a)(iii)	one point labelled P where ellipse crosses displacement axis marked	A1
3(b)(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)	M1 A1
3(b)(ii)	(there is) current in the circuit <i>either</i> current causes thermal energy (dissipated) in resistor thermal energy comes from energy of magnet <i>or</i> current causes magnetic field around coil two fields cause an opposing force on magnet	B1 B1 B1 B1 (B1) (B1)

Question	Answer	Marks
4(a)(i)	Any 2 from: <ul style="list-style-type: none"> • allows the reflected signal to be distinguished from the emitted signal • detection occurs in the time between emitted pulses • (reflection of ultrasound) detected by same probe / transducer / crystal • cannot emit and detect at same time (hence pulses) 	B2
4(a)(ii)	piezo-electric crystal	B1
	ultrasound makes crystal vibrate / resonate	B1
	vibration produces (alternating) e.m.f. / p.d. across crystal	B1
4(b)(i)	$= (1.6 \times 10^6 - 4.3 \times 10^2)^2 / (1.6 \times 10^6 + 4.3 \times 10^2)^2$ $= 0.999$	B1
4(b)(ii)	without the gel most of the ultrasound is reflected	B1
	Z values more similar / α reduces so less (ultrasound) is reflected / more (ultrasound) is transmitted	B1

Question	Answer	Marks
5(a)	Any 2 from: <ul style="list-style-type: none"> • noise can be filtered out / noise can be removed / signal can be regenerated • can carry more information per unit time / greater rate of transmission of data • can have extra bits of data to check for errors • can be encrypted 	B2
5(b)(i)	$v \propto \lambda$	C1
	ratio $= v_{\text{air}} / v_{\text{fibre}}$ $= 3.00 \times 10^8 / 2.07 \times 10^8$ $= 1.45$	A1
5(b)(ii)	attenuation $= 10 \log (P_2/P_1)$	C1
	$0.40 \times L = 10 \log (1.5 / 0.06)$	C1
	$0.40 \times L = 13.979$	
	$L = 35 \text{ km}$	A1

Question	Answer	Marks
6(a)	2.0 cm	B1
6(b)	At 16 (cm) from A the electric fields are equal or $E_A = E_B$ $E = Q / 4\pi\epsilon_0 r^2$ $Q_A / (4\pi\epsilon_0 r_A^2) = Q_B / (4\pi\epsilon_0 r_B^2)$ $3.6 \times 10^{-9} / 0.16^2 = Q_B / 0.08^2$ $Q_B = 9.0 \times 10^{-10} \text{ C}$	B1 C1 A1
6(c)(i)	$V = Q / 4\pi\epsilon_0 r_A$ $V = 3.6 \times 10^{-9} / (4 \times \pi \times 8.85 \times 10^{-12} \times 0.020)$ $V = 1600 \text{ V}$	C1 A1
6(c)(ii)	$C = Q / V$ $= 3.6 \times 10^{-9} / 1600$ $= 2.3 \times 10^{-12} \text{ F}$	C1 A1

Question	Answer	Marks
7(a)	axes labelled with resistance and temperature	M0
	concave curve not touching temperature axis	A1
	line with negative gradient throughout	A1
7(b)	resistance of thermistor decreases	B1
	total circuit resistance decreases so voltmeter reading increases <i>or</i> current increases so voltmeter reading increases <i>or</i> greater proportion of resistance in fixed resistor so voltmeter reading increases <i>or</i> p.d. across thermistor decreases so voltmeter reading increases	B1
7(c)	(0.020 strain means) $\Delta R / R = 0.090$	C1
	$\Delta R = 0.090 \times 120 = 10.8 \Omega$	C1
	resistance = $120 + 10.8 = 130 \Omega$	A1

Question	Answer	Marks
8(a)	a region where a magnet / magnetic material / moving charge / current carrying conductor experiences a force	B1
8(b)	$B = F / Il$ e.g. $= 9 \times 10^{-3} / (5.0 \times 0.045)$ = 0.040 T	C1 A1
8(c)(i)	force is (always) perpendicular to the velocity / direction of motion magnetic force provides the centripetal force <i>or</i> force perpendicular to motion causes circular motion magnitude of force (due to the magnetic field) is constant <i>or</i> no work done by force <i>or</i> the force does not change the speed	B1 B1 B1
8(c)(ii)	Applying the list rule, any 2 from: accelerating p.d. radius of path / radius of semicircle magnetic flux density	B2

Question	Answer	Marks
9(a)(i)	$9.0 / \sqrt{2} =$ 6.4 V	A1
9(a)(ii)	$\omega = 20$ $\omega = 2\pi / T$ $T = 2\pi / 20$	C1
	$T = 0.31$ s	A1
9(b)	the r.m.s. voltages are different, so no	B1
9(c)(i)	$P = V_{\text{r.m.s.}} \times I_{\text{r.m.s.}}$	C1
	$= 120 \times 0.64$ $= 76.8 \text{ W}$	C1
	efficiency $= (76.8 / 80) \times 100$ = 0.96 or 96 %	A1
9(c)(ii)	Any one from: <ul style="list-style-type: none">• heat losses due to resistance of windings / coils• heat losses in magnetising and demagnetising core / hysteresis losses in core• heat losses due to eddy currents in (iron) core• loss of flux linkage	B1

Question	Answer	Marks
10(a)	energy of a photon required to remove an electron	B1
	either: energy to remove electron from a surface or: <u>minimum</u> energy to remove electron or: energy to remove electron with zero <u>kinetic</u> energy	B1
10(b)(i)	Correct read off from graph of f as 5.45×10^{14} Hz when $E_{MAX} = 0$ $5.45 \times 10^{14} \times 6.63 \times 10^{-34}$ $= 3.6 \times 10^{-19}$ J	C1
10(b)(ii)	$3.6 \times 10^{-19} / 1.6 \times 10^{-19} = 2.3$ eV so potassium	A1
10(c)(i)	each photon has same energy so no change	B1
10(c)(ii)	more photons (per unit time) so (rate of emission) increases	B1

Question	Answer	Marks
11(a)	$eV = hf$ $f = 1.60 \times 10^{-19} \times 100\,000 / 6.63 \times 10^{-34}$ $= 2.41 \times 10^{19} \text{ Hz}$	C1 A1
11(b)	(aluminium filter) absorbs (most) low energy X-rays Any 2 from <ul style="list-style-type: none">• X-ray beam contains many wavelengths• so low energy X-rays are not absorbed in the body• low energy X-rays can cause harm but do not contribute to the image	B1 B2
11(c)(i)	$I / I_o = e^{-\mu x}$ $e^{-0.23 \times 0.80} = 0.83$ 17% absorbed	C1 A1
11(c)(ii)	bone is seen as lighter / muscle is seen as darker either bone has a higher μ value so absorbs more or muscle has a lower μ value so transmits more	B1 B1

Question	Answer	Marks
12(a)	(minimum) energy required to separate the nucleons to infinity	M1 A1
12(b)(i)	37 2	B1
12(b)(ii)	fission	B1
12(b)(iii)	binding energy per nucleon smaller for U than for Cs	B1
12(c)	Current ratio 2 Y to 1 Zr, so initially 3 Y $2 = 3 e^{-\lambda t}$ $\lambda = 0.693 / 2.7$ $\ln(2 / 3) = -(\ln 2 / 2.7)t$ $t = 1.6$ days or $(\frac{1}{2})^n = 2 / 3$ $n = 0.585$ time $= 0.585 \times 2.7$ $= 1.6$ days	C1 C1 A1 or (C1) (C1) (A1)