Question	Answer	Marks
1(a)	time (electric) current <i>allow</i> amount of substance <i>allow</i> luminous intensity	B2
	any two of the above quantities, 1 mark each	
1(b)(i)	$g = (4\pi^2 \times 1.50) / (2.48^2)$ = 9.63 m s ⁻²	A1
1(b)(ii)	percentage uncertainty = 2 + (3×2) or fraction uncertainty = 0.02 + (0.03×2)	C1
	percentage uncertainty = 8%	A1
1(b)(iii)	absolute uncertainty = 0.08×9.6 = 0.8 m s^{-2}	A1
r		1
Question	Answer	Marks
2(a)	$f_0 = f_S v / (v - v_S)$ 9560 = $f \times 1510 / (1510 - 4.50)$	C1

	9500 = 7× 15107 (1510 = 4.50)	
	<i>f</i> = 9530 Hz	A1
2(b)(i)	$v^2 = u^2 + 2as$ height = 5.6 ² /(2 × 9.81)	C1
	= 1.6 m	A1
2(b)(ii)	downward sloping straight line starting from a point on the speed axis and ending at point (T , 0)	B1

Question	Answer	Marks
2(b)(iii)	$ (\Delta)E = mg(\Delta)h = 0.45 \times 9.81 \times 1.6 $	C1
	= 7.1 J	A1
2(b)(iv)	air resistance increases (and weight constant)	B1
	(resultant force decreases so) acceleration decreases	B1

Question	Answer	Marks
3(a)	force \times displacement in the direction of the force	B1
3(b)(i)	displacement = 4.4×30	C1
	work done = $140 \cos 30^\circ \times 4.4 \times 30$	C1
	$= 1.6 \times 10^4 \text{J}$	A1
3(b)(ii)	p = F/A	C1
	<i>F</i> = 860 – 140 sin 30° (= 790)	C1
	A = 790 / 2400 = 0.33 m ²	A1
3(b)(iii)	$\sigma = F/A \text{ or } F/\pi r^2 \text{ or } 4F/\pi d^2$	C1
	9.6×10^6 = 4 × 140 / πd^2	A1
	$d = 4.3 \times 10^{-3} \mathrm{m}$	

Question	Answer	Marks
3(c)	$E = \frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ or area under graph	C1
	$\begin{aligned} (\Delta)E &= \frac{1}{2} \times (140 + 210) \times 0.20 \times 10^{-3} \\ \text{or} \\ (\Delta)E &= (\frac{1}{2} \times 210 \times 0.60 \times 10^{-3}) - (\frac{1}{2} \times 140 \times 0.40 \times 10^{-3}) \\ \text{or} \\ (\Delta)E &= (140 \times 0.20 \times 10^{-3}) + (\frac{1}{2} \times 0.20 \times 10^{-3} \times 70) \\ \text{or} \\ (\Delta)E &= [\frac{1}{2} \times 3.5 \times 10^5 \times (0.60 \times 10^{-3})^2] - [\frac{1}{2} \times 3.5 \times 10^5 \times (0.40 \times 10^{-3})^2] \end{aligned}$	C1
	Δ <i>E</i> = 0.035 J	A1

Question	Answer	Marks
4(a)(i)	distance moved by wavefront / energy during one cycle / vibration / oscillation / period (of source) or <u>minimum</u> distance between two wavefronts or distance between two <u>adjacent</u> wavefronts	B1
4(a)(ii)	maximum displacement (of particle / point on wave)	B1
4(b)(i)	1 light / waves spread (at each slit)	B1
	2 constant phase difference (between light / waves)	B1
4(b)(ii)	$n\lambda = d\sin\theta$	C1
	$d = 3 \times 650 \times 10^{-9} / \sin 34^{\circ}$	C1
	$d = 3.5 \times 10^{-6} \mathrm{m}$	A1
4(b)(iii)	wavelength of blue light is shorter (than 650 nm / red light)	M1
	so angle (between third order diffraction maxima) decreases	A1

Question	Answer	Marks
5(a)	volt / ampere	B1
5(b)	$R = \rho L / A$	C1
	$L = (1.8 \times 0.38 \times 10^{-6}) / 9.6 \times 10^{-7}$	C1
	= 0.71 m	A1
5(c)(i)	thermal energy is dissipated in resistor Y	B1
5(c)(ii)	V/1.2 = 1.8/(1.8 + 0.6)	C1
	V = 0.90 V	A1
	or	
	<i>I</i> = 1.2 / (1.8 + 0.6) (= 0.50)	(C1)
	V= 0.50 × 1.8 = 0.90 V	(A1)
5(d)(i)	remain the same	B1
5(d)(ii)	decrease	B1
5(e)(i)	1/R = 1/1.8 + 1/3.6 $R = 1.2 \Omega$	A1

Question	Answer	Marks
5(e)(ii)	I = 1.2 / (1.2 + 0.60)	C1
	= 0.67 A	A1
	or	
	$V_{\rm Y} = 1.2 \times 0.60 / (1.2 + 0.60) (= 0.40)$	(C1)
	I = 0.40 / 0.60 = 0.67 A	(A1)
		•

Question	Answer	Marks
6(a)	E = V/d $d = 350/1.4 \times 10^4$	C1
	= 0.025 m	A1
6(b)(i)	E = F/Q	C1
	$Q = 6.7 \times 10^{-15} / 1.4 \times 10^{4} (= 4.8 \times 10^{-19} \text{ C})$ = $(4.8 \times 10^{-19} / 1.6 \times 10^{-19}) e$	C1
	= 3.0 e	A1
6(b)(ii)	mass = $8.3 \times 10^{-27} / 1.66 \times 10^{-27}$ = 5.0 u	A1
6(b)(iii)	number = $5 - 3$ = 2	A1

Question	Answer	Marks
7(a)	made up of quarks (so) not a fundamental particle	B1
7(b)(i)	beta plus / β ⁺ (particle)	B1
	(electron) neutrino / $v_{(e)}$	B1
7(b)(ii)	kinetic energy of nucleus	B1
	gamma / γ radiation	B1

Can F. Guio