


Question	Answer	Marks
1(a)(i)	$\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca}(\text{OH})_2$	1
1(a)(ii)	OH^- / hydroxide	1
1(b)	M1 (decreasing melting point down the group because) lower forces of attraction / weaker bonds (between cations and anions / oxide / O^{2-}) M2 larger cations and constant charge OR decreasing charge density of cation (down group)	2
1(c)	high(er) activation energy / heating overcomes activation energy	1
1(d)	180°	1
1(e)(i)	reacts with / behaves as both acid and base	1
1(e)(ii)	$\text{BeO} + 2\text{OH}^- + \text{H}_2\text{O} \rightarrow \text{Be}(\text{OH})_4^{2-}$	1
1(f)(i)	M1 equal rates of forward and backward reactions M2 closed system OR macroscopic properties unchanged	2
1(f)(ii)	M1 $\begin{array}{llll} \text{Cl}_2 & \text{O}_2 & & \\ \text{initial} & x & 0 & \text{mol} \\ \text{equilibrium} & 0.3x & 0.35x & \text{mol} \\ \text{mol fraction} & \frac{6}{13} & \frac{7}{13} & \end{array}$ M2 $K_p = \frac{100\,000 \times \frac{7}{13}}{(100\,000 \times \frac{6}{13})^2} = 2.53 \times 10^{-5}$ M3 Pa^{-1}	3

Question	Answer	Marks
1(g)(i)	-1	1
1(g)(ii)	M1 (enthalpy / energy change) when one mole of a compound / substance is formed M2 from its elements in their standard states	2
1(g)(iii)	$-(602 + -188) + (\Delta H_f[\text{MgO}_2] + -286) = -96$ $\Delta H_f[\text{MgO}_2] = -600 \text{ (kJ mol}^{-1}\text{)}$	2
1(g)(iv)	$-(-600) - (+602) = -2 \text{ (kJ mol}^{-1}\text{)}$	1

Question	Answer	Marks
2(a)	darker / stronger / deeper down the group	1
2(b)(i)	weaker oxidising agents / (relative reactivity as oxidising agents) decreases down the group	1
2(b)(ii)	M1 (structure =) simple / molecular, because it has a low melting / boiling point M2 (bonding =) covalent, because it is hydrolysed	2
2(c)(i)	M1 cream ppt / solid M2 (ppt / solid) partially dissolves in (aqueous) ammonia	2

Question	Answer	Marks
2(c)(ii)	<p>M1 Acid behaviour of H_2SO_4 H_2SO_4 acts as an acid with Cl^- OR acid / base reaction with Cl^-</p> <p>M2 Oxidising behaviour of H_2SO_4 H_2SO_4 acts as an oxidising agent with I^- OR H_2SO_4 does not oxidise Cl^-</p> <p>M3 <i>Products formed</i> (for iodide reaction) I_2 / S / SO_2 / H_2S is formed OR (for chloride reaction) (only) $HC{l}$ is formed</p> <p>OR</p> <p><i>Comparison of oxidising strength</i> H_2SO_4 not strong enough to / cannot oxidise Cl^- (to Cl_2) OR I^- more powerful reducing agent than Cl^-</p>	3
2(d)(i)	<p>M1 increases (down the group) because of increasing VdW M2 because of increasing number of electrons</p>	2
2(d)(ii)	<p>M1 less stable (down the group) / decreases M2 lower H–Hal bond enthalpy / energy</p>	2
2(e)(i)	in the same phase / state	1
2(e)(ii)	$C_2H_5CH(OH)C_2H_5 + HC{l} \rightarrow C_2H_5CH(Cl)C_2H_5 + H_2O$	1
2(e)(iii)	$ \begin{array}{c} OH \\ \\ H_3C—C—CH_2CH_3 \\ \\ CH_3 \end{array} $	1
2(e)(iv)	substitution	1

Question	Answer	Marks
3(a)(i)	M1 acidified / H^+ $Cr_2O_7^{2-}$ / (potassium / sodium) dichromate OR manganate(VII) / MnO_4^- / $KMnO_4$ M2 (heat under) reflux	2
3(a)(ii)	nucleophilic addition	1
3(a)(iii)	yellow / orange / red ppt / solid	1
3(a)(iv)	it does not have four different (groups of) atoms attached to (central) carbon OR it does not have a chiral carbon / centre OR it has two identical / $COOH$ groups attached to (central) carbon OR mirror image is super(im)posable	1
3(a)(v)	M1 hydrolysis M2 esterification / condensation	2
3(b)(i)	M1 no. of mol $O_2 = \frac{1.00 \times 10^5 \times 1.06 \times 10^{-3}}{(8.31 \times 850)}$ M2 no. of mol of nitroglycerine = $4 \times 0.0150 = 0.0600$ (mol) M3 mass of nitroglycerine = $0.0600 \times 227 = 13.6(2)$ (g)	3
3(b)(ii)	$1.06 \times 29 = 30.7(4)$ dm ³	1
3(c)(i)	$C_5H_8O_2$	1

Question	Answer	Marks
3(c)(ii)	$ \begin{array}{c} \text{H} & (\text{CH}_2)_2\text{COOH} \\ & \\ \text{---C} & \text{---C} \\ & \\ \text{H} & \text{H} \end{array} $	1
3(c)(iii)	<p> M1 curly arrow from C=C double bond to Br M2 correct dipole in Br₂ AND curly arrow from Br—Br to Br^{δ-} M3 correct intermediate AND curly arrow from lone pair on Br⁻ to C⁺ M4 correct product </p>	4

Question	Answer	Marks
3(d)(i)	<p>M1</p> <p>M2 (two) different groups on each C atom in the C=C / end of the C=C double bond</p> <p>M3 no / restricted rotation about C=C</p>	3
3(d)(ii)	H ₂ / hydrogen	1
3(d)(iii)	<p>M1 / M2 absorptions seen in both spectra (any two):</p> <p>(same) both show an absorption at 1680–1730 (cm⁻¹) because of C=O</p> <p>(same) both show an absorption at 1040–1300 (cm⁻¹) because of C–O</p> <p>(same) both show an absorption at 2500–3000 (cm⁻¹) because of RCO₂H / O–H in RCO₂H / carboxyl(ic acid)</p> <p>M3 absorption only seen in spectrum of T:</p> <p>(different) T shows an absorption at 1500–1680 (cm⁻¹) because of C=C</p> <p>(different) T shows an absorption at 3000–3100 (cm⁻¹) because of (C=)C–H</p>	3