2

A uniform square lamina ABCD of side 4a and weight W rests in a vertical plane with the edge AB inclined at an angle θ to the horizontal, where $\tan \theta = \frac{1}{3}$. The vertex B is in contact with a rough horizontal surface for which the coefficient of friction is μ . The lamina is supported by a smooth peg at the point E on AB, where BE = 3a (see diagram).

(i)	Find expressions in terms of W for the normal reaction forces at E and B . [5]

(ii)	Given that the lamina is about to slip, find the value of μ . [3]

Three uniform small spheres A, B and C have equal radii and masses 5m, 5m and 3m respectively.

3

(•)	
(1)	Show that the speed of A after its collision with B is $\frac{1}{2}u(1-e)$ and find the speed of B.
nhe	ere B now collides with sphere C . Subsequently there are no further collisions between any of
	ere B now collides with sphere C . Subsequently there are no further collisions between any of eres.
phe	eres.
phe	
phe	eres.
phe	

······································

A particle P of mass m is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O and P is held with the string taut and horizontal. The particle P is projected vertically downwards with speed $\sqrt{(2ag)}$ so that it begins to move along a circular path.

4

e string becomes stack when OP makes an angle θ with the upward vertical through	ugn <i>O</i> .
Show that $\cos \theta = \frac{2}{3}$.	[5]
	string becomes slack when OP makes an angle θ with the upward vertical thro. Show that $\cos \theta = \frac{2}{3}$.

1 1	and the greatest height, above the horizontal through O , reached by P in its subsequent motion [4]
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
	Cio
•••	

5

A thin uniform rod AB has mass λM and length 2a. The end A of the rod is rigidly attached to the surface of a uniform hollow sphere (spherical shell) with centre O, mass 3M and radius a. The end B of the rod is rigidly attached to the surface of a uniform solid sphere with centre C, mass 5M and radius a. The rod lies along the line joining the centres of the spheres, so that CBAO is a straight line. The horizontal axis L is perpendicular to the rod and passes through the point of the rod that is a distance $\frac{1}{2}a$ from B (see diagram). The object consisting of the rod and the two spheres can rotate freely about L.

(i)	Show that the moment of inertia of the object about L is $\left(\frac{408 + 7\lambda}{12}\right)Ma^2$.	[6]

••	
The po	eriod of small oscillations of the object about L is $5\pi\sqrt{\left(\frac{2a}{g}\right)}$.
	Find the value of λ . [6]
••	
••	
••	
••	

A random sample of 9 members is taken from the large number of members of a sports club, and

tributed. A 95% confidence interval for the population mean height, μ metrodata as $1.65 \le \mu \le 1.85$.	umed to be norma es, is calculated fro
) Find an unbiased estimate for the population variance.	
1 1	
	•••••
) Denoting the height of a member of the club by x metres, find Σx^2 for this s	sample of 9 members

		$F(t) = \begin{cases} 1 - e^{-at} \\ 0 \end{cases}$	$t \ge 0$, otherwise,	
whe	are a is a positive constant	nt. The mean value of	T is 200.	
(i)	Write down the value of	of a.		[1
(ii)	Find the probability tha	t an electrical compon	ent of this type develops a fa	ault in less than 150 days
			.0	
				•••••
othe is gr	iece of equipment contact. The probability that, reater than 0.99.	ains n of these composite 150 days, at leas		s independently of each
othe is gr	iece of equipment contact. The probability that,	ains n of these composite 150 days, at leas	onents, which develop fault	
othe is gr	iece of equipment contact. The probability that, reater than 0.99.	ains n of these composite 150 days, at leas	onents, which develop fault	s independently of each
othe is gr	iece of equipment contact. The probability that, reater than 0.99.	ains n of these composite 150 days, at leas	onents, which develop fault	s independently of each
othe is gr	iece of equipment contact. The probability that, reater than 0.99.	ains n of these composite 150 days, at leas	onents, which develop fault	s independently of each
othe is gr	iece of equipment contact. The probability that, reater than 0.99.	ains n of these composite 150 days, at leas	onents, which develop fault	s independently of each
othe is gr	iece of equipment contact. The probability that, reater than 0.99.	ains n of these composite 150 days, at leas	onents, which develop fault	s independently of each
othe is gr	iece of equipment contact. The probability that, reater than 0.99.	ains n of these composite 150 days, at leas	onents, which develop fault	s independently of each
othe is gr	iece of equipment contact. The probability that, reater than 0.99.	ains n of these composite 150 days, at leas	onents, which develop fault	s independently of each

8

A random sample of 8 elephants from region A is taken and their weights, x tonnes, are recorded.

(1 tonne = 1000 kg.) The results are summarised as follows.
$\Sigma x = 32.4 \qquad \Sigma x^2 = 131.82$
A random sample of 10 elephants from region B is taken. Their weights give a sample mean of 3.78 tonnes and an unbiased variance estimate of 0.1555 tonnes ² . The distributions of the weights of elephants in regions A and B are both assumed to be normal with the same population variance. Test at the 10% significance level whether the mean weight of elephants in region A is the same as the mean weight of elephants in region B .
• • • • • • • • • • • • • • • • • • • •

9 A random sample of five pairs of values of x and y is taken from a bivariate distribution. The values are shown in the following table, where p and q are constants.

х	1	2	3	4	5
у	4	p	q	2	1

The equation of the regression line of y on x is y = -0.5x + 3.5.

(i)	Find the values of p and q .	[7]
		•••••
		•••••
	• C	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

	. 6
(ii)	Find the value of the product moment correlation coefficient. [3]

$$f(x) = \begin{cases} \frac{1}{30} \left(\frac{8}{x^2} + 3x^2 - 14 \right) & 2 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find the distribution function of X .	[3]
The	random variable Y is defined by $Y = X^2$.	
(ii)	Find the probability density function of Y .	[4]

(iii)	Find the value of y such that $P(Y < y) = 0.8$. [3]

11 Answer only **one** of the following two alternatives.

EITHER

The points A and B are a distance 1.2 m apart on a smooth horizontal surface. A particle P of mass $\frac{2}{3}$ kg is attached to one end of a light spring of natural length 0.6 m and modulus of elasticity 10 N. The other end of the spring is attached to the point A. A second light spring, of natural length 0.4 m and modulus of elasticity 20 N, has one end attached to P and the other end attached to B.

(1)	Show that when P is in equilibrium $AP = 0.75$ m.	3]
		•••
		•••
		•••
	particle P is displaced by 0.05 m from the equilibrium position towards A and then released from	m
		/111
rest.		
rest.		[6]
rest.		

		•••
		•••
		•••
		•••
		•••
		•••
		•••
(iii)	Find the speed of P when it passes through the equilibrium position.	2]
		•••
(iv)		3]
(iv)		3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value.	3]

OR

The number of puncture repairs carried out each week by a small repair shop is recorded over a period of 40 weeks. The results are shown in the following table.

Number of repairs in a week	0	1	2	3	4	5	≥ 6
Number of weeks	6	15	9	6	3	1	0

(i) Calculate the mean as suitability of a Poisson					s in a wee	k and com	nment on	the possible [3]
	•••••					•••••		
	•••••							
	•••••					•••••		
	•••••	•••••		•••••	•••••	•••••	•••••	•••••
	•••••				O			
	•••••				<u>r</u>	•••••		
	•••••					•••••		
ollowing table shows some of weeks using a Poisson Number of repairs in a	distrib				3	4	5	# period of
Expected frequency		8.076	12.921	10.337	5.513	2.205	а	b
(ii) Show that $a = 0.706$	and fir	nd the val	ue of the o	constant b				[3]
	••••							
	• • • • • • • • • • • • • • • • • • • •					•••••		
	• • • • • • • • • • • • • • • • • • • •					•••••		
	•••••							

(iii)	Carry out a goodness of fit test of a Poisson distribution with mean 1.6, using a 10% significance level. [8]