1

The curve <i>C</i> has equation <i>y</i> coordinates of the centroid	of the region enclose	ed by C , the line $x = 1$ an	d the <i>x</i> -axis.	[6
		\Q_1		
				•••••
				,
	<u> </u>			
				•••••
				••••••
				•••••
				••••••

It is given that $y = \ln(ax + 1)$, who for every positive integer n ,	ere a is a positi	ve constant.	Prove by mat	hematical induction	on that,
	$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = (-1)^{n-1}$	$\frac{(n-1)!a^n}{(ax+1)^n}.$			[6]
					••••••
					•••••
		•••••			•••••
			••••••		•••••
		<u> </u>	···········		•••••
			<i></i>		•••••
			••••••		•••••
					•••••
					•••••
					•••••
					•••••
		•••••			•••••
		•••••			•••••
		••••••			•••••
			••••••		
			•••••		•••••

3	The integral I_n	where n is a	positive in	teger is	defined [hv
J	The integral In	, where n is a	positive iii	teger, is	acilica	U y

$$I_n = \int_{\frac{1}{2}}^1 x^{-n} \sin \pi x \, \mathrm{d}x.$$

(i)	Show that $n(n+1)I_{n+2} = 2^{n+1}n + \pi - \pi^2 I_n.$ [5]
	, 20
	Cio
(ii)	Find I_5 in terms of π and I_1 .

4	The line $y = 2$	r⊥1 ic an	asymptote of the	curve C with equa	ation
4	The line $v = 2$.	x + 1 18 an	asymptote of the	curve C with edua	uıon

$$y = \frac{x^2 + 1}{ax + b}.$$

(i)	Find the values of the constants a and b.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	State the equation of the other asymptote of C .	[1]
		•••••

(iii) Sketch C. [Your sketch should indicate the coordinates of any points of intersection with the y-axis. You do not need to find the coordinates of any stationary points.] [3]

5 Let
$$S_N = \sum_{r=1}^N (5r+1)(5r+6)$$
 and $T_N = \sum_{r=1}^N \frac{1}{(5r+1)(5r+6)}$.

	(i)	Use standard results from the List of Formulae	(MF10)) to show tha
--	-----	--	--------	---------------

	$S_N = \frac{1}{3}N(25N^2 + 90N + 83).$	[3]
		•••••
		••••••
(ii)	Use the method of differences to express T_N in terms of N .	[4]
		••••••

(iii)	Find $\lim_{N \to \infty} (N^{-3} S_N T_N)$. [2]
(iii)	Find $\lim_{N\to\infty} (N^{-3}S_N T_N)$. [2]
(iii)	Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$. [2]
(iii)	

6	With O as the origin, the points A , B , C have position vectors
	i - j, $2i + j + 7k$, $i - j + k$
	respectively.
	(i) Find the shortest distance between the lines OC and AB . [5]

of the lines OC a	$\operatorname{and} AB$.		
•••••		•••••	
••••••		••••••	
		, 20)
•••••		•••••	
•••••			

- 7 The equation $x^3 + 2x^2 + x + 7 = 0$ has roots α , β , γ .
 - (i) Use the relation $x^2 = -7y$ to show that the equation

$$49y^3 + 14y^2 - 27y + 7 = 0$$

has roots	$\frac{\alpha}{\beta\gamma}$, $\frac{1}{\gamma}$	$\frac{\beta}{\alpha}$, $\frac{\gamma}{\alpha\beta}$								[4]
••••••	•••••	•••••			•••••		••••	•••••	•••••	
•••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	
									•••••	
									•••••	
•••••					•••••		Ø	•••••	•••••	
	•••••	•••••)		•••••	•••••	
•••••	••••••					••••••	•••••	•••••	•••••	
•••••	••••••	••••••		<u></u>	••••••	••••••	•••••	•••••	•••••	
•••••	•••••	••••••	U		•••••			•••••	•••••	
					•••••					
									•••••	
••••••	•••••	•••••			•••••		•••••	•••••	•••••	
	••••••	•••••								
									•••••	
•••••	•••••	•••••								

(ii)	Show that $\frac{\alpha^2}{\beta^2 \gamma^2} + \frac{\beta^2}{\gamma^2 \alpha^2} + \frac{\gamma^2}{\alpha^2 \beta^2} = \frac{58}{49}.$ [3]
	, 0
(iii)	Find the exact value of $\frac{\alpha^3}{\beta^3 \gamma^3} + \frac{\beta^3}{\gamma^3 \alpha^3} + \frac{\gamma^3}{\alpha^3 \beta^3}$. [2]

8	The	matrix	M	is	defined	by
---	-----	--------	---	----	---------	----

$$\mathbf{M} = \begin{pmatrix} 2 & m & 1 \\ 0 & m & 7 \\ 0 & 0 & 1 \end{pmatrix},$$

where $m \neq 0, 1, 2$.

(i)	Find a matrix P and a diagonal matrix D such that $\mathbf{M} = \mathbf{PDP}^{-1}$.	[7]

		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	(ii) Find $\mathbf{M}^7\mathbf{P}$.	[3]
(11)	(ii) Find W. I.	اری

_						_	_
9	(i)	Use de	e Mois	zre's the	eorem to	show	that

$\sec 6\theta = \frac{\sec^6 \theta}{32 - 48\sec^2 \theta + 18\sec^4 \theta - \sec^4 \theta}$)	,	
$\sec \theta =$	$32 - 48 \sec^2 \theta + 18$	$\sec^4 \theta - \sec^6 \theta$.	[6]	
	•••••			
	•••••		••••••	
	0		•••••	
	•••••			
	••••••	••••••		
	•••••			

(ii) Hence obtain the roots of the equation

$3x^6 - 36x^4 + 96x^2 - 64 = 0$	
in the form $\sec q\pi$, where q is rational.	[5]

10	The	matrix	\mathbf{A}	is	defined	by
----	-----	--------	--------------	----	---------	----

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 1 \\ 1 & -2 & -2 \\ 2 & 3 & \theta \end{pmatrix}.$$

(i) (a)	Find the rank of A when $\theta \neq -1$.	[3]
		••••••••••
		,
		•••••••••
(b)	Find the rank of A when $\theta = -1$.	[1]
		•••••
Consider	the system of equations	
	x + 5y + z = -1, x - 2y - 2z = 0,	
	$2x + 3y + \theta z = \theta.$	
(**) G 1		[2]
(II) Solv	we the system of equations when $\theta \neq -1$.	[3]
•••••		

(iii)	Find the general solution when $\theta = -1$. [3]
	O
(iv)	Show that if $\theta = -1$ and $\phi \neq -1$ then $\mathbf{A}\mathbf{x} = \begin{pmatrix} -1 \\ 0 \\ \phi \end{pmatrix}$ has no solution. [2]

11 Answer only **one** of the following two alternatives.

EITHER

It is given that $w = \cos y$ and

$$\tan y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 2\tan y \frac{dy}{dx} = 1 + e^{-2x}\sec y.$$

(i)	$\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + 2\frac{\mathrm{d}w}{\mathrm{d}x} + w = -\mathrm{e}^{-2x}.$	[4]

(ii)	Find the particular solution for y in terms of x, given that when $x = 0$, $y = \frac{1}{3}\pi$ and $\frac{dy}{dx} = \frac{1}{\sqrt{3}}$. [10]

OR

The curves C_1 and C_2 have polar equations, for $0 \le \theta \le \frac{1}{2}\pi$, as follows:

$$C_1 : r = 2(e^{\theta} + e^{-\theta}),$$

 $C_2 : r = e^{2\theta} - e^{-2\theta}.$

The curves intersect at the point P where $\theta = \alpha$.

i)	Show that $e^{2\alpha} - 2e^{\alpha} - 1 = 0$. Hence find the exact value of α and show that the value of r at P i $4\sqrt{2}$.

[3]

(ii) Sketch ${\cal C}_1$ and ${\cal C}_2$ on the same diagram.

i) Find	d the area of the	e region enclosed	d by C_1 , C_2 an	d the initial line	, giving your ans	wer corre
3 818	gnificant figure	58.		. 0.		
•••••	•••••					•••••
••••						
•••••	•••••	- A	·····	•••••••••••••	•••••	•••••••
•••••	•••••					•••••
•••••	•••••	•••••	•••••		•••••	••••••
•••••	•••••	•••••			•••••	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.							
must be elemity shown.							
<u> </u>							