

Question	Answer	Marks	Guidance
1	Impulse = $0.2 \times (250 - 40) = 42$	M1 A1	Find impulse from change in momtm. (may be implied) (if sign of 40 wrong here or below, can allow M1)
	$T = 42 / 1200 = 7/200 \text{ or } 0.035 \text{ [s]}$	M1 A1	Find time T from impulse = Ft
Alternative method for question 1			
	$a = 1200 / 0.2 = 6000$	M1 A1	Find acceleration a from $F = ma$ (may be implied)
	$T = (250 - 40) / 6000 = 7/200 \text{ or } 0.035 \text{ [s]}$	M1 A1	Find time T from $v = u + at$
Alternative method for question 1			
	K.E. = $\frac{1}{2} \times 0.2 \times (250^2 - 40^2) = 6090$	M1	Find loss of K.E. (may be implied; ignore sign of K.E.)
	Work = $1200 \times \frac{1}{2} (250 + 40) T = 174\,000 T$	M1 A1	Find work done from $F \times \frac{1}{2} (u + v) t$ (A1 for both)
	$T = 6090 / 174\,000 = 7/200 \text{ or } 0.035 \text{ [s]}$	A1	Equate to find T
		4	

Question	Answer	Marks	Guidance
2(i)	$T_A = m v_A^2 / a - mg \cos \alpha$ [= $m (9ag/4) / a - mg \cos \alpha$]	B1	Find tension T_A at A from $F = ma$ radially
	$T_B = m v_B^2 / a + mg \cos \alpha$	B1	Find tension T_B at B from $F = ma$ radially
	$\frac{1}{2}mv_B^2 = \frac{1}{2}m v_A^2 + 2mga \cos \alpha$ [$v_B^2 = ag (9/4 + 4 \cos \alpha)$]	M1 A1	Apply conservation of energy at B (A0 if no m)
	$v_B^2 = 4v_A^2 - 5ag \cos \alpha = v_A^2 + 4ga \cos \alpha$	M1	Combine using $T_B = 4 T_A$ and $v_A^2 = 9ag/4$ to verify $\cos \alpha$
	$9ag \cos \alpha = 3v_A^2 = 27ag/4$, $\cos \alpha = 3/4$	AG	A1
		6	
2(ii)	$T_B = 4 T_A = (9 - 4 \cos \alpha) mg = 6mg$ or $v_B^2 = 21ag/4$, $T_B = (21/4 + \cos \alpha) mg = 6mg$	M1 A1	Find T_B
		2	

Question	Answer	Marks	Guidance
3(i)	$3mv_A + mv_B = 3mu$ [or $3v_A + v_B = 3u$] (AEF)	M1	Use conservation of momentum for A and B (correct masses)
	$v_B - v_A = eu$	M1	Use Newton's restitution law with consistent LHS signs
	$v_A = \frac{1}{4}(3 - e)u$ [$v_B = \frac{3}{4}(1 + e)u$]	A1	Combine to find speed of A
	$w_B + v_C = v_B$ and $v_C - w_B = ev_B$ (AEF)	M1	Use conservation of momentum for B and C and Newton's restitution law with consistent LHS signs
	$w_B = \frac{1}{2}(1 - e)v_B$ $w_B = (3/8)(1 - e^2)u$ and $v_C = \frac{1}{2}(1 + e)v_B$ $v_C = (3/8)(1 + e)^2u$ aef	A1 A1	Combine to find w_B and v_C in terms of v_B (may be implied) and with v_B replaced (note: $v_C = \frac{3}{8}e^2u + \frac{3}{4}eu + \frac{3}{8}u$)
		6	
3(ii)	$\frac{1}{4}(3 - e) = (3/8)(1 + e)^2$	M1	Find equation in e by equating their v_A and their v_C
	$3e^2 + 8e - 3 = 0 = (3e - 1)(e + 3)$	M1	Simplify and solve resulting quadratic eqn for e ,
	$e = 1/3$	A1	(implicitly) rejecting $e = -3$
		3	

Question	Answer	Marks	Guidance
4(i)	$I_{AB} = \frac{1}{3} 5M (7a/2)^2 + 5M (7a/2)^2$ or $(4/3) 5M (7a/2)^2$ [= $(245/3) Ma^2$]	B1	Find or state MI of rod <i>AB</i> about axis at <i>A</i>
	$I_M = \frac{2}{3} M (2a)^2 + M (7a)^2$ [= $(155/3) Ma^2$]	M1 A1	M1 for one term correct, A1 for both terms correct
	$I_{kM} = \frac{2}{3} kM a^2 + kM (4a)^2$ [= $(50/3) kMa^2$]	M1 A1	M1 for one term correct, A1 for both terms correct
	$I = [(245/3 + 155/3 + 50k/3) Ma^2] = (50/3) (8 + k) Ma^2$	A1	Find MI of object about axis at <i>A</i> , simplified to 2 terms aef
		6	
4(ii)	$\frac{1}{2} I \omega^2 = 5Mg (7a/2) (1 - \cos 60^\circ) + Mg (7a) (1 - \cos 60^\circ)$ + $kMg (4a) (1 - \cos 60^\circ)$	*M1 A1	Find eqn. for ω^2 when <i>AB</i> vertical by energy (3 terms on RHS, same trig expression in each for M1) A1 for 2 terms correct on RHS
	$\frac{1}{4} (49 + 8k) / \frac{1}{2} (50/3) (8 + k) = 81/400$	A1	A1 for RHS and LHS all correct
	$4 (49 + 8k) = 27 (8 + k), k = 4$	DM1	Equate ω^2 to $81g / 400a$ to find <i>k</i>
	Alternative method for question 4(ii)	A1	
	$6 + k) Mg \times \{(49 + 8k)/2(6 + k)\} (1 - \cos 60^\circ)$ = $\frac{1}{2} (49 + 8k) Mga (1 - \cos 60^\circ) = \frac{1}{4} (49 + 8k) Mga$	*M1 A1 A1	M1 for mass \times com \times trig expression, A1 for 2 parts correct A1 all correct
	$\frac{1}{4} (49 + 8k) / \frac{1}{2} (50/3) (8 + k) = 81/400$	DM1	Equate ω^2 to $81g / 400a$ to find <i>k</i>
	$4 (49 + 8k) = 27 (8 + k), k = 4$	A1	
		5	

Question	Answer	Marks	Guidance
5(i)	$R_B \cos \theta + F_B \sin \theta = W \sin \theta + \frac{1}{4} W \sin \theta$	*M1 A1	Resolve forces along rod AB ($\sin \theta = 3/5$, $\cos \theta = 4/5$)
	$F_B = \frac{1}{3} R_B$	B1	Relate F_B and R_B (may be implied)
	$(4/5 + \frac{1}{3} \times 3/5) R_B = (1 + \frac{1}{4}) (3/5) W, R_B = \frac{3}{4} W$	AG	DM1 A1 Combine using $\tan \theta = \frac{3}{4}$ to verify R_A
		5	
5(ii)	$R_C = F_B \cos \theta - R_B \sin \theta + W \cos \theta + \frac{1}{4} W \cos \theta$ $= (\frac{1}{3} \times \frac{3}{4} \times 4/5) W - (\frac{3}{4} \times 3/5) W + (5/4 \times 4/5) W$ $= (1/5 - 9/20 + 1) W = \frac{3}{4} W$	*M1 A1	Resolve forces perpendicular to rod AB , where C denotes rim Substitute to find R_C
		DM1	
		A1	
		4	
5(iii)	$A: R_C \times AC + (R_B \sin \theta - F_B \cos \theta) \times 2x - W \cos \theta \times x$ $[= W (\frac{3}{4} \times 2x - \frac{3}{4} \times 8a/5 + 9/20 \times 2x - 1/5 \times 2x - 4x/5)]$ $C: (R_B \sin \theta - F_B \cos \theta) \times 2a \cos \theta - W \cos \theta \times CG + \frac{1}{4} W \cos \theta \times AC$ $[= W (9/20 \times 2a - 1/5 \times 2a - 8a/5 + x + \frac{1}{4} \times 2x - \frac{1}{4} \times 8a/5) \cos \theta]$ $G: R_C \times CG - (R_B \sin \theta - F_B \cos \theta) \times x - \frac{1}{4} W \cos \theta \times x$ $[= W (\frac{3}{4} \times 8a/5 - \frac{3}{4} \times x - 9/20 \times x + 1/5 \times x - 1/5 \times x)]$ $B: R_C \times 2a \cos \theta - W \cos \theta \times x - \frac{1}{4} W \cos \theta \times 2x$ $[= W (\frac{3}{4} \times 2a - x - \frac{1}{4} \times 2x) \cos \theta]$	M1 A1	Find total moments about any point, denoting rod's centre by G (taken on either side of C) where $AC = 2x - 2a \cos \theta = 2x - 8a/5$ $CG = x - AC = 2a \cos \theta - x = 8a/5 - x$
	$x = a$	A1	Substitute and equate to zero to find x
		3	

Question	Answer	Marks	Guidance
6(i)	$f(t) = (1/400) \exp(-t/400)$ or $0.0025 \exp(-0.0025t)$ [= 0 ($t < 0$)]	B1	State probability density function $f(t)$ for $t \geq 0$
		1	
6(ii)	$P(T < 500) = \int_0^{500} f(t) dt = [\exp(-t/400)]_0^{500}$ $= 1 - e^{-5/4} = 0.7135$ or 0.713 (allow 0.714)	M1 A1	Find $P(T < 500)$: (M0 for $1 - F(500) = 0.287$)
		2	
6(iii)	$1 - e^{-m/400}$ or $e^{-m/400} = 1/2$, $e^{m/400} = 2$	M1	Find median value m from $F(m) = 1/2$
	$m = 400 \ln 2$ or 277	M1 A1	
		3	

Cam E-Guide

Question	Answer	Marks	Guidance
7(i)	$E(X) = 1 / (\frac{1}{2} \times \frac{1}{2}) = 4$	B1	Find or state $E(X)$
		1	
7(ii)	$P(X=3) = q^2 p$ (with $p = \frac{1}{4}$, $q = \frac{3}{4}$) = $9/64$ or 0.141	M1 A1	Find prob. of exactly 3 throws needed
		2	
7(iii)	$P(X < 4) = 1 - q^3 = 37/64$ or 0.578	M1 A1	Find prob. of fewer than 4 throws needed
		2	
7(iv)	$1 - q^{N-1} > 0.95$ (AEF)	M1	Formulate condition for N ($1 - q^N$ is M0)
	$0.05 > (3/4)^{N-1}$, $N - 1 > \log 0.05 / \log 0.75$	M1	Set $q = 3/4$, rearrange and take logs (any base) to give bound
	$N - 1 > 10.4$, $N_{\min} = 12$	A1	Find N_{\max} (< or = can earn M1 M1 A0, max 2/3)
		3	

Question	Answer	Marks	Guidance
8	H_0 : Holidays are independent of salesman <i>or</i> no association between holidays and salesman (AEF)	B1	State (at least) null hypothesis Find expected values (lose A1 if rounded to integers) Find value of X^2 from $\sum (E_i - O_i)^2 / E_i$ [or $\sum O_i^2 / E_i - n$] State or use correct tabular χ^2 value
	E_i : 29.68 33.04 21.28 23.32 25.96 16.72 (to 1 d.p.)	M1 A1	
	X^2 = 0.7380 + 0.7446 + 0.0037 + 0.9392 + 0.9477 + 0.0047	M1	
	$= 3.38$ (to 3 s.f.)	A1	
	$\chi_{2, 0.9}^2 = 4.605$ (to 3 s.f.)	B1	
	Accept H_0 if $X^2 <$ tabular value	M1	Compare their calculated value with their X^2 value and appropriate conclusion
	Type of holidays is independent of salesman (AEF)	A1	Correct conclusion, from correct values (3.37 – 3.39)
		8	

Question	Answer	Marks	Guidance
9(i)	$\bar{x} = 0.785$	B1	Find sample mean
	$s^2 = (6.19 - 7.85^2/10) / 9$ [= 37/12 000 or 0.003083 or 0.05553 ²]	M1	Estimate population variance (allow biased here: 0.002775 or 0.05268 ²)
	$H_0: \mu = 0.75, H_1: \mu > 0.75$ (AEF)	B1	State hypotheses (B0 for \bar{x} ...)
	$t_{9, 0.95} = 1.83$ [3]	B1	State or use correct tabular t -value
	$t = (\bar{x} - 0.75)/(s/\sqrt{10}) = 1.99$ [Reject H_0 and accept H_1]	M1 A1	Find value of t (or compare \bar{x} with $0.75 + 0.032 = 0.782$) Consistent conclusion
	Claim (of yield per plant increased) is justified (AEF)	B1	FT on both t -values (must be t value)
		7	
9(ii)	$\bar{x} \pm t \sqrt{s^2/10}$	M1	Find confidence interval (must be a t value)
	$t_{9, 0.975} = 2.26$ [2]	B1	State or use correct tabular value of t
	0.785 ± 0.04 or [0.745, 0.825]	A1	Evaluate confidence interval (either form)
		3	

Question	Answer	Marks	Guidance
10(i)	$b = S_{xy} / S_{xx}$ and $r = S_{xy} / \sqrt{(S_{xx} S_{yy})}$ so	M1	Relate gradient b in $y = bx + c$ to r, S_{xx}, S_{yy}
	$b = r \sqrt{(S_{yy} / S_{xx})}$	A1	
	$= 0.5815 \sqrt{(7.9473 / 3.3086)} = 0.901[2]$	M1 A1	Find S_{xx} and S_{yy} and hence find b to 3 s.f.
	$(y - 6.7375) = b(x - 3.3125), y = 0.901x + 3.75$	M1 A1	Find equation of regression line of y on x
Alternative method for question 10(i)			
	$S_{xy} = r \sqrt{(S_{xx} S_{yy})} = r \sqrt{\{(8s_x^2)(8s_y^2)\}}$ $= 8 \times 0.5815 \sqrt{(7.9473 \times 3.3086)}$	M1	Find S_{xy} (allow values consistently scaled by factor 8)
	$= 23.855$ (allow 2.9818) (to 4 s.f.)	A1	
	$b = S_{xy} / S_{xx} = 23.85 / (8 \times 3.3086) = 0.901[2]$	M1 A1	Hence find b to 3 s.f.
	$(y - 6.7375) = b(x - 3.3125), y = 0.901x + 3.75$	M1 A1	Find equation of regression line of y on x
		6	

Question	Answer	Marks	Guidance
10(ii)	$H_0: \rho = 0, H_1: \rho > 0$	B1	State both hypotheses (B0 for r ...)
	$r_{8, 5\%} = 0.621$	B1	State or use correct tabular one-tail r -value
	Accept H_0 if $0.5815 < \text{tab. } r\text{-value}$ (AEF)	M1	State or imply valid method for conclusion
	No evidence of positive correlation (AEF)	A1	Correct conclusion
Alternative method for question 10(ii)			
	$H_0: \rho = 0, H_1: \rho > 0$	B1	State both hypotheses (B0 for r ...)
	$t_r = r\sqrt{((n-2) / (1 - r^2))} = 1.75, t_{6,0.95} = 1.943$	B1	
	Accept H_0 if $ t_r < \text{tab. } t\text{-value}$ (AEF)	M1	State or imply valid method for conclusion
	No evidence of positive correlation (AEF)	A1	Correct conclusion
		4	
10(iii)	$y = 9.16$	B1	Find y when $x = 6.0$
	Unreliable since r is small <i>or</i> r is not close to 1 <i>or</i> no correlation <i>or</i> 6.0 is not close to mean of x (AEF)	B1	Reasonable comment on reliability
		2	

Question	Answer	Marks	Guidance
11E(i)	$\frac{1}{2} mu^2 = \frac{1}{2} kmg (\frac{1}{4} a)^2/a$, $k = 16u^2/ag$	AG	M1 A1 Verify k by using conservation of energy (M0 if ω is found and SHM formula $v = a\omega$ then used)
		2	
11E(ii)	$\pm m d^2x/dt^2 = kmg x/a$	*M1	Apply Newton's law at general point (e.g. $OP = a + x$), requires m
	$d^2x/dt^2 = -(kg/a)x$ or $-(16u^2/a^2)x$ [$\omega = \sqrt{kg/a}$ or $4u/a$]	A1	Derive standard SHM form (requires minus sign)
	Period is $2\pi\sqrt{a/kg} = 2\pi\sqrt{a^2/16u^2} = \pi a/2u$	DM1 A1	Find period from $2\pi/\omega$
		4	
11E(iii)	$[\frac{1}{2} mv^2 = \frac{3}{4} \times \frac{1}{2} mu^2] v^2 = \frac{3}{4} u^2$ or $v = (\sqrt{3}/2)u$	M1	Relate v and u using given loss in energy
	$x = (\frac{1}{4}a) \sin \omega t$, $v = (\frac{1}{4}a) \omega \cos \omega t$ or $u \cos \omega t$	M1	Relate v and t
	$\cos \omega t = (\sqrt{3}/2)u / (\frac{1}{4}a)$ $\omega = (\sqrt{3}/2)$	M1 A1	Combine to find $\cos \omega t$
	$t = (\pi/6) / (4u/a) = \pi a / 24u$ or $0.0417 \pi a / u$ or $0.131 a/u$	M1 A1	and hence t
		6	

Question	Answer	Marks	Guidance
110	$\bar{x} - \bar{y} = 0.448 - 0.48 = [-] 0.032$	B1	Find difference in sample means (either sign; may be implied)
	$s_x^2 = (10.1 - 22.4^2/50) / 49 = 0.0648 / 49$ [= 0.001322]	M1 A1	Estimate both population variances (may be implied)
	$s_y^2 = (16.3 - 28.8^2/60) / 59 = 2.476 / 59$ [= 0.04197]	A1	(allow biased here: 0.001296 and 0.04127)
	$s_c^2 = s_x^2/50 + s_y^2/60$	M1	Estimate combined variance
	= 0.0007259 or 0.02694 ² (to 3 s.f. throughout)	A1	
	$z = 0.032 / s_c$ = 1.188	M1 A1	Find value of z (either sign) [or $0.032 / \sqrt{1/50 + 1/60}$] [or 1.0895]
	$\Phi(z) = 0.8826$ [or 0.8620]	A1	Find $\Phi(z)$
	$100 \times (1 - \Phi(z)) = 11.7$ [or 13.8]	M1 A1	Find limiting value for α , based on one-tail test (M0 for basing on two-tail test)
	$\alpha > (or \geq) 11.7$ [or 13.8]	A1	Find set of possible values of α Allow 11.8 if 11.74 seen (Misreading $\alpha\%$ as α loses only last A1)

Question	Answer	Marks	Guidance
11O	Alternative method for question 11O		
	$\bar{x} - \bar{y} = 0.448 - 0.48 = [-] 0.032$	B1	Find difference in sample means (either sign; may be implied)
	$s_x^2 = (10.1 - 22.4^2/50) / 49 = 0.0648 / 49$ [= 0.001322]	M1 A1	Estimate both population variances (may be implied)
	$s_y^2 = (16.3 - 28.8^2/60) / 59 = 2.476 / 59$ [= 0.04197]	A1	(allow biased here: 0.001296 and 0.04127)
	Assume equal [population] variances	B1	State assumption
	$s_p^2 = (49 s_x^2 + 59 s_y^2) / 108$ or $(0.0648 + 2.476) / 108$ = 0.02353 or 0.1534 ²	B1	(Find pooled estimate of common variance s_x^2 and s_y^2 not needed explicitly so may be implied by result)
	$z = 0.032 / s_c$ = 1.188 [or 0.032 / $s_p \sqrt{1/50 + 1/60}$] [or 1.0895]	M1 A1	Find value of z (either sign)
	$\Phi(z) = 0.8826$ [or 0.8620]	A1	Find $\Phi(z)$
	$100 \times (1 - \Phi(z)) = 11.7$ [or 13.8]	M1 A1	Find limiting value for α , based on one-tail test (M0 for basing on two-tail test)
	$\alpha > (or \geq) 11.7$ [or 13.8]	A1	Find set of possible values of α Allow 11.8 if 11.74 seen (Misreading $\alpha\%$ as α loses only last A1)
		12	