

15

Integration

1 Find y for each of the following gradient functions:

a) $\frac{dy}{dx} = 4x - 5$

b) $\frac{dy}{dx} = 2x^2 - 5x - 4$

c) $\frac{dy}{dx} = (x + 2)(2x - 3)$

2 Find $f(x)$ for each of the following gradient functions.

a) $f'(x) = x^3 - 3$

b) $f'(x) = 4 + 3x - x^2$

c) $f'(x) = (2x + 3)^2$

3 Find the following indefinite integrals.

a) $\int (4x + 3)dx$

b) $\int (2x^4 - 1)dx$

c) $\int (x^3 - 2x)dx$

4 Find the following indefinite integrals.

a) $\int (2x - 3)^2dx$

b) $\int (x + 3)(x - 2)dx$

c) $\int (1 - 2x)^2dx$

5 Find the equation of the curve $y = f(x)$ that passes through the specified point for each of the following gradient functions.

a) $\frac{dy}{dx} = 4x + 1$; $(1, 3)$

b) $\frac{dy}{dx} = 1 - 2x^3$; $(4, 0)$

c) $f'(x) = (3x - 2)^2$; $(0, -4)$

d) $f'(x) = (x - 2)(x + 3)$; $(-1, -2)$

6 Curve C passes through the point $(4, 10)$; its gradient at any point is given by $\frac{dy}{dx} = 3x^2 - 6x + 1$.

a) Find the equation of the curve C.

b) Show that the point $(2, -12)$ lies on the curve.

7 Evaluate the following definite integrals. Do not use a calculator.

a) $\int_{-1}^3 4x \, dx$

f) $\int_{-1}^0 (5 - 4x) \, dx$

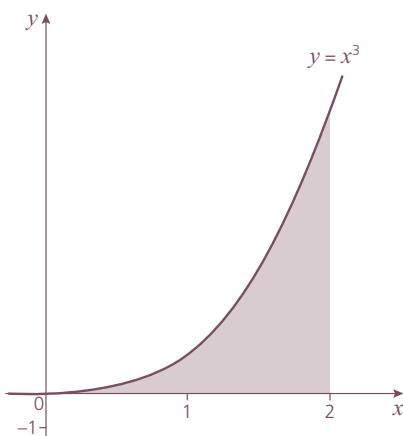
b) $\int_{-1}^5 6x^2 \, dx$

g) $\int_0^3 (2x + 1)^2 \, dx$

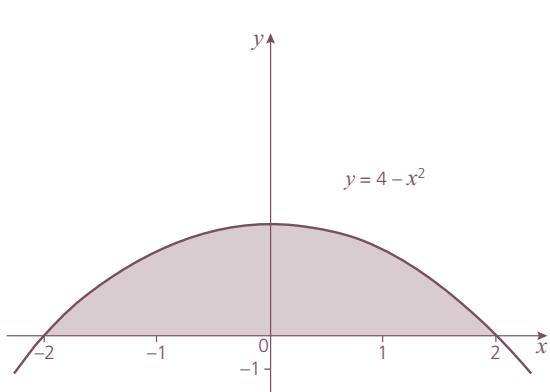
c) $\int_{-2}^1 (x - 3) \, dx$

h) $\int_{-2}^2 (2x - 3)^2 \, dx$

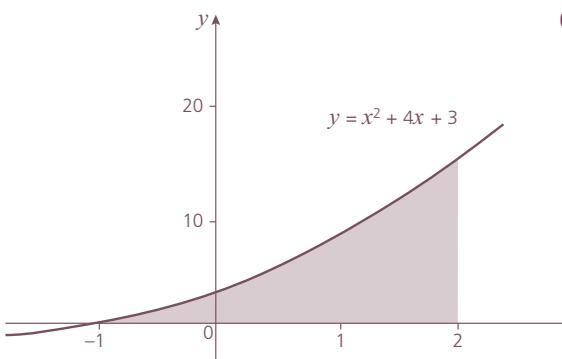
d) $\int_{-1}^2 (x^2 - 3x) \, dx$

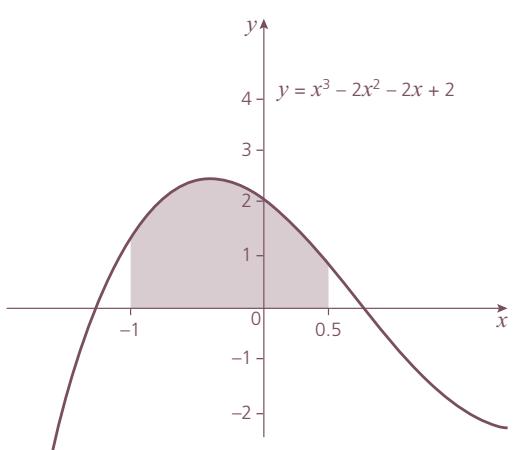

i) $\int_{-1}^1 (x + 1)(2x - 1) \, dx$

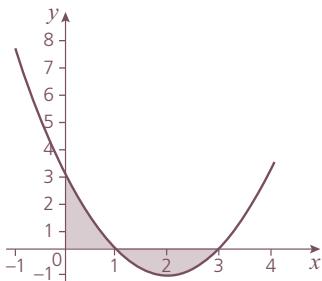
e) $\int_{-4}^{-2} (x^3 + x) \, dx$


j) $\int_1^3 x(x + 1)(x + 2) \, dx$

8 Find the area of each of the shaded regions. Do not use a calculator.

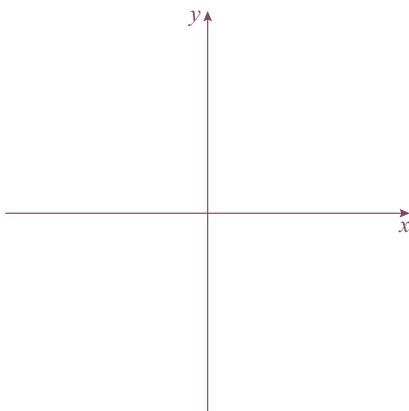

a)


c)

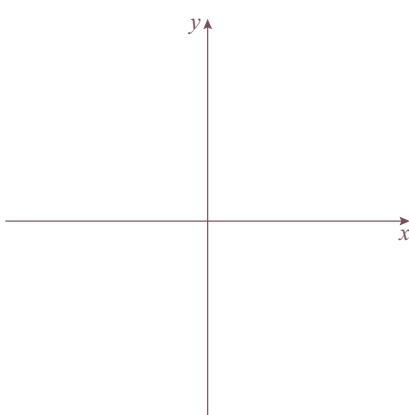

b)

d)

9 The graph shows the curve $y = x^2 - 4x + 3$. Calculate the area of the shaded region.


10 The graph shows the curve $y = x^3 - 5x^2 + 6x$.

a) Find the area of each shaded region, A and B. Do not use a calculator.


b) State the total area enclosed between the curve and the x -axis for $0 \leq x \leq 3$.
Do not use a calculator.

11 a) Sketch the curve $y = (x + 1)(x - 1)(x - 3)$ and shade the areas enclosed between the curve and the x -axis.

11 b) Find the total area enclosed between the curve and the x -axis. Do not use a calculator.

12 a) Sketch the curve $y = (x + 1)^2(x - 2)$ and shade the areas enclosed between the curve and the x -axis.

12 b) Find the area you have shaded. Do not use a calculator.

13 Find the following indefinite integrals.

a) $\int \frac{1}{2x-3} dx$

b) $\int e^{2x-3} dx$

c) $\int (2x-3)^3 dx$

d) $\int \sin(2x-3) dx$

e) $\int \cos(2x-3) dx$

f) $\int \sec^2(2x-3) dx$

14 Evaluate the following definite integrals. Do not use a calculator.

a) $\int_1^4 \frac{2}{2x+1} dx$

b) $\int_1^4 e^{2x+1} dx$

c) $\int_1^4 (2x+1)^3 dx$

d) $\int_0^{\frac{\pi}{2}} \sin\left(2x + \frac{\pi}{4}\right) dx$

e) $\int_0^{\frac{\pi}{2}} \cos\left(2x + \frac{\pi}{4}\right) dx$

f) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\left(\frac{x}{2} - \frac{\pi}{4}\right) dx$