

1 For the function $f(x) = 2x - 5$ find:

a) $f(2)$

b) $f(0)$

c) $f(-3)$

2 For the function $g(x) = (2x - 2)^2$ find:

a) $g(0)$

b) $g(0.5)$

c) $g(-2)$

3 For the function $h: x \rightarrow x^2 - 2x$ find:

a) $h(2)$

b) $h(-2)$

c) $h(0)$

4 For the function $f: x \rightarrow 5 - 3x$ find:

a) $f(3)$

b) $f(-3)$

c) $f(1)$

5 For the function $g(x) = \sqrt{2x + 1}$ find:

a) $g(0)$

b) $g(4)$

c) $g(12)$

Remember that the $\sqrt{}$ symbol means the positive square root of a number.

6 For the function $f(x) = x^2 - 2$

Draw a mapping diagram when the inputs are:

a) the numbers in the set $\{1, 2, 3\}$

b) the numbers in the set $\{-1, -2, -3\}$.

7 Find the range of the following functions:

a) $f(x) = 2x + 1$ Domain $\{0, 1, 2\}$

b) $g(x) = 3x^2 - 1$ Domain $\{2, 4, 6\}$

c) $h(x) = \frac{2x - 1}{5}$ Domain $\{1, 3, 6\}$

d) $f(x) = 4x$ Domain \mathbb{Z}^+

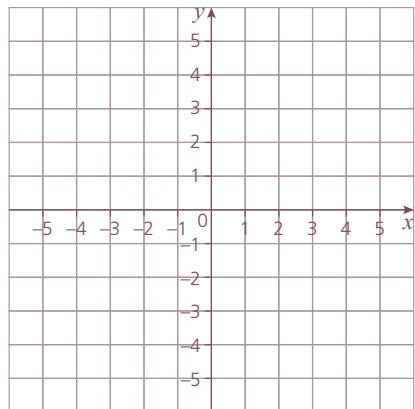
The symbol \mathbb{Z} means the set of all integers, and \mathbb{Z}^+ means the set of positive integers.

e) $f: x \rightarrow x^2 - 5$ Domain \mathbb{Z}

8 What values must be excluded from the domain of the following functions and why must they be excluded?

a) $f(x) = \sqrt{2x - 1}$

b) $f(x) = \frac{3}{x^2}$


c) $f(x) = \frac{2x - 1}{x + 1}$

1 FUNCTIONS

9 a) On the axes provided, plot the graph of $y = f(x)$, where $f(x) = x^2 - 4$, for $0 \leq x \leq 4$.

b) Add the line $y = x$ to your graph.

c) Given that $f^{-1}(x) = \sqrt{x+4}$, calculate the values of:

(i) $f^{-1}(-4)$

(ii) $f^{-1}(-3)$

(iii) $f^{-1}(0)$

(iv) $f^{-1}(5)$

d) Use these to add the graph of $y = f^{-1}(x)$ to the graph you drew in part a).

e) What you notice?

10 Given that $f(x) = 2x - 3$; $g(x) = x^2$ and $h(x) = 3x - 2$ find the following:

a) $fg(3)$

e) $fgh(0)$

b) $gf(3)$

f) $hgf(0)$

c) $fh(2)$

g) $fgh(x)$

d) $hf(2)$

h) $hgf(x)$

1 FUNCTIONS

11 Given $f(x) = 2x + 1$ and $g(x) = \sqrt{3x + 1}$ find:

a) $fg(5)$

c) $fg(0)$

b) $gf(5)$

d) $gf(0)$

12 Given $f(x) = x + 3$, $g(x) = x^2 - 3$ and $h(x) = \frac{1}{x+3}$ for $x \neq -3$, find:

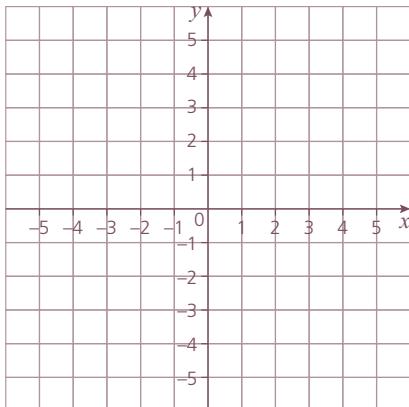
a) $fg(x)$

d) $hf(x)$

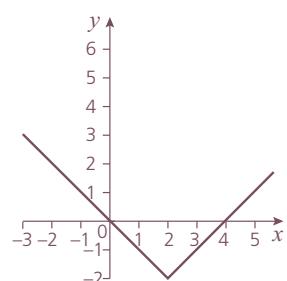
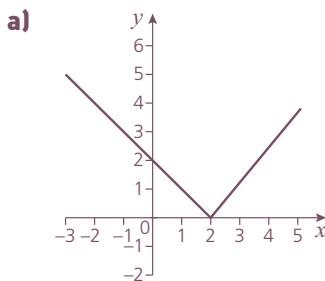
b) $gf(x)$

e) $hfg(x)$

c) $fh(x)$


f) $hgf(x)$

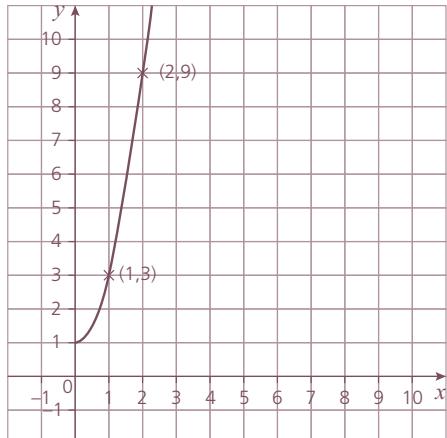
13 a) Find the inverse for the following functions:



(i) $f(x) = 2x - 3$

(iii) $f(x) = x^2 - 4$ for $x \geq 0$

b) On the axes below, plot the graphs of $y = f(x)$ and $y = f^{-1}(x)$.

14 The first graph shows the line $y = 2 - x$ and the other graphs are related to this. Write down their equations.

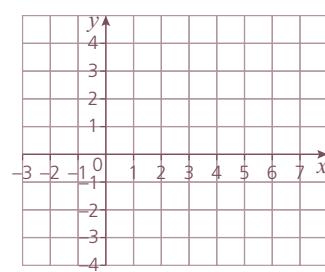
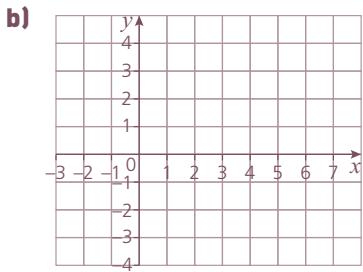
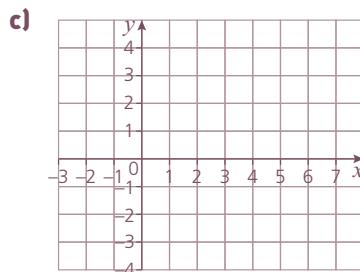
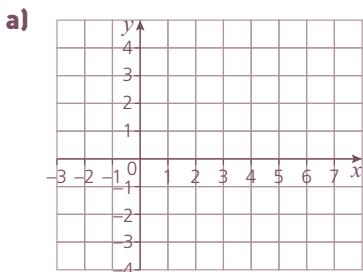


1 FUNCTIONS

15 The graph below shows part of a quadratic curve, defined for values of $x \geq 0$.

a) Determine the equation of the curve.

b) Sketch the inverse of the curve on the same axes and give its equation.





16 Draw the following graphs.

a) $y = x - 2$

b) $y = |x - 2|$

c) $y = -|x - 2|$

d) $y = 2 - |x - 2|$

